
Bayesian Estimation of Dynamic Discrete Choice Models∗

Susumu Imai
Concordia University

Neelam Jain
Northern Illinois University

and
Andrew Ching

Ohio State University

February 1, 2004

Abstract

We propose a new estimator for dynamic programming discrete choice models. Our esti-
mation method combines the Dynamic Programming algorithm with a Bayesian Markov Chain
Monte Carlo algorithm into one single Markov Chain algorithm that solves the dynamic pro-
gramming problem and estimates the parameters at the same time.
Our key innovation is that during each solution-estimation iteration both the parameters

and the expected value function are updated only once. This is in contrast to the conventional
estimation methods where at each estimation iteration the dynamic programming problem needs
to be fully solved. A single dynamic programming solution requires repeated updates of the
expected value functions. As a result, in our algorithm the computational burden of estimating
a dynamic model is of similar order of magnitude as that of a static model.
Another feature of our algorithm is that even though per estimation iteration, we keep the

number of grid points on the state variable small, we can make the number of effective grid
points as large as we want by simply increasing the number of estimation iterations. This is
how our algorithm overcomes the “Curse of Dimensionality”.
We prove that under mild conditions similar to those imposed in standard Bayesian litera-

ture, the parameters in our algorithm converge in probability to the true posterior distribution,
regardless of the starting values. We show how our method can be applied to models with
standard random effects where observed and unobserved heterogeneities are continuous. This is
in contrast to most dynamic structural estimation models where only a small number of discrete
types are allowed as heterogeneities.

∗Very preliminary. Comments welcome. Please direct all correspondence to Susumu Imai, Department of
Economics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC. H3G 1M8, Canada, e-mail:
simai@alcor.concordia.ca, phone: 514-848-2424-3907, or Neelam Jain,Department of Economics, Northern Illinois
University, 508 Zulauf Hall, DeKalb, IL. 60115, e-mail: njain@niu.edu, phone: (815)-753-6964

1

1 Introduction

Structural estimation of Dynamic Discrete Choice (DDC) models has become increasingly popular
in both empirical economics and marketing. Examples include Keane and Wolpin (1997), Erdem
and Keane (1995). Recently, it has also been applied in analyzing criminal behavior, as in Imai and
Krishna (2001). Structural estimation is appealing for at least two reasons. First, it captures the
dynamic forward-looking behavior of individuals, which is very important in understanding agents’
behaviors in various settings. For example, in labor market, individuals carefully consider future
prospects when they switch occupations. Secondly, since the estimation is based on explicit solution
of a structural model, it avoids the Lucas Critique. Hence, after the estimation, policy experiments
can be relatively straightforwardly conducted by simply changing the estimated value of “policy”
parameters and simulating the model to assess the change. However, one major obstacle in adopting
the structural estimation method has been its computational burden. There are mainly two reasons
why this estimation method is computationally demanding. First, in structural estimation, the
likelihood or the moment conditions we construct are based on the explicit solution of the dynamic
model. In order to solve a dynamic model, we need to compute the Bellman equation repeatedly
until the calculated expected value function (Emax function) converges. That is, given a parameter
value, in order to evaluate the likelihood or the moment condition once, Bellman equation has to be
computed many times until convergence. Secondly, in solving the Dynamic Programming Problem,
the Bellman equation has to be solved at each possible point in the state space. The possible
number of points in the state space increases exponentially with the increase in the dimensionality
of the state space. This is commonly referred to as the “Curse of Dimensionality”, and makes the
estimation of the dynamic model even in relatively simple setting infeasible.

In this paper, we propose an estimator that helps overcome the two computational difficulties
of structural estimation. We adopt the Bayesian Markov Chain Monte Carlo (MCMC) estimation
algorithm, where we simulate the posterior distribution by repeatedly drawing parameters from a
Markov Chain until convergence. In contrast to the conventional MCMC estimation approach, we
combine the Bellman equation step and the MCMC algorithm step into a single hybrid solution-
estimation step, which we iterate until convergence. The key innovation in our algorithm is that for
a given state space, we need to solve the Bellman equation only once between each estimation step.
Since evaluating a single Bellman equation is as computationally demanding as computing a static
model, the computational burden of estimating a DP model is in order of magnitude comparable
to that of estimating a static model. Furthermore, since we move the parameters according to the
MCMC algorithm after each Bellman step, we are “estimating” the model and solving for the DP
problem at the same time. This is in contrast to conventional estimation methods that “estimate”
the model only after solving the DP problem. In that sense, our estimation method is related to
the algorithm advocated by Aguirreagabiria and Mira (2001), where they propose either to iterate
the Bellman equations only limited number of times before constructing the likelihood, or to solve
the DP problems “roughly” at the initial stage of the Maximum Likelihood routine and increase
the precision of the DP solution with the iteration of the Maximum Likelihood routine. The first
estimation strategy, which is not based on the full solution of the model, cannot handle unobserved
heterogeneity. In the second strategy, they still compute the solution of the DP problem, whether

2

exact or inexact, during each estimation step. In our algorithm, we only need to solve the Bellman
equation once between each estimation step.

Specifically, we start with some initial guess of the emax function. We then evaluate the Bellman
equation for each state space point, or for a subset of state space grid points. That is, we solve
the optimal policies and calculate the value function. We then use Bayesian MCMC to update the
parameter vector. We update the emax function for a state space point by averaging with those
past iterations in which the parameter vector is ‘close’ to the current parameter vector and the
state variables are either exactly the same as the current state variables (in the case with finite
state space points) or close to the current state variables (when the state space is continuous).
This method of updating the emax function is similar to Pakes and McGuire (2001) except in the
important respect that we also include the parameter vector in determining the set of iterations
over which averaging occurs.

Our algorithm also addresses the problem of ‘the Curse of Dimensionality’. In most Dynamic
Programming solution exercises involving a continuous state variable, the state space grid points
once determined, are fixed over the entire algorithm, as in Rust (1997). In our Bayesian DP
algorithm, the state space grid points do not have to be the same for each solution-estimation
iteration. In fact, by varying the state space grid points at each solution-estimation iteration, our
algorithm allows for an arbitrarily large number of state space grid points by increasing the number
of iterations. This is the way how our estimation method overcomes the “Curse of Dimensionality”.

The main difference between our estimation algorithm to the conventional structural estima-
tion algorithms is in the use of information obtained from past iterations. In the conventional
solution/estimation algorithm, at iteration t, most of the information gained in all past estimation
iterations remain unused, except for the likelihood and its Jacobian and Hessian in Classical case,
and MCMC transition function in Bayesian case. In contrast, we extensively use the vast amounts
of computational results obtained in past iterations, especially those that are helpful in solving the
DP problem.

We demonstrate the performance of our algorithm by estimating a Dynamic Programming model
of firm entry and exit choice with observed and unobserved heterogeneity. The unobserved random
effects coefficients are assumed to have a continuous distribution function, and the observed char-
acterisitcs are assumed to be continuous as well. It is well known that for a conventional Dynamic
Programming Maximum Likelihood estimation strategy, this setup imposes almost prohibitive com-
putational burden because during each estimation step, the Dynamic Programming model has to be
solved for each random effects parameter value and each value of observed firm characteristic. This
is why most practitioners of structural estimation assume discrete distributions for random effects
following Heckman and Singer (1984) and allow for only discrete types as observed characteristics.
We show that using our algorithm, the estimation exercise becomes one that is computationally
quite similar in difficulty to a Bayesian estimation of static discrete choice model with random
effects (see McCullogh and Rossi (1994) for details), and thus is feasible. Indeed, the computing
time for our estimation exercise (with 100 firms and 100 time periods) is about 10 hours, similar to
the time required to estimate a reasonably complicated static random effects model. In contrast,
the conventional simulated maximum likelihood routine took 6 hours and 20 minutes just for a
single iteration.

3

In addition to the experiments that show convergence of our algorithm to the correct parameter
values, we provide a formal proof that under very mild conditions, the distribution of parameter
estimates simulated from our solution-estimation algorithm converges to the true posterior distri-
bution in probability as we increase the number of iterations. The proof relies on coupling theory
(see Rosenthal (1995)) in addition to the standard asymptotic techniques such as Law of Large
Numbers.

Our algorithm shows that the Bayesian methods of estimation, suitably modified, can be used
effectively to conduct full solution based estimation of structural dynamic discrete choice models.
Thus far, application of Bayesian methods to estimate such models has been particularly difficult.
The main reason is that the solution of the DP problem, i.e. the repeated calculation of the
Bellman equation is computationally so demanding that the MCMC, which typically involves far
more iterations than the standard Maximum Likelihood routine, becomes infeasible. One of the
few examples of Bayesian estimation is Lancaster (1997). He successfully estimates the equilibrium
search model where the Bellman equation can be transformed into an equation where all the
information on optimal choice of the individual can be summarized in the reservation wage, and
hence, there is no need for solving the value function. Another example is Geweke and Keane
(1995) who estimate the DDC model without solving the DP problem. In contrast, our paper
accomplishes Bayesian estimation based on full solution of the DP problem. The difference turns
out to be important because the estimation algorithms that are not based on the full solution of the
model can only accomodate limited specification of the unobserved heterogeneities. As discussed
earlier, we do so by simultaneously solving for the Dynamic Programming problem and iterating
on the MCMC algorithm.

Our estimation method not only makes Bayesian application to DDC models computationally
feasible, but even possibly superior to some conventional (non-Bayesian) methods, by reducing the
computational burden of estimating a dynamic model to that of estimating a static one. Further-
more, the usually cited advantages of Bayesian estimation over the classical estimation methods
apply here as well. That is, first, the conditions for the convergence of the MCMC algorithm are
in general weaker than the conditions for the global maximum of the Maximum Likelihood (ML)
estimator, as we show in this paper. Second, in MCMC, standard errors can be derived straight-
forwardly as a byproduct of the estimation routine, whereas in ML estimation, standard errors
have to be computed usually in the following two ways. One is by inverting the numerically calcu-
lated Information Matrix, which is valid only in a large sample world. The other is by repeatedly
bootstrapping and reestimating the model, which is computationally demanding.

The organization of the paper is as follows. In Section 2, we present a general version of the
DDCmodel and discuss conventional estimation methods. In Section 3, we explain our Bayesian DP
algorithm and prove convergence. In Section 4, we present estimation results of several experiments
applied to the model of entry and exit. Finally, in Section 5, we conclude and briefly discuss future
direction of this research. The Appendix contains all proofs.

4

2 The Framework

Let θ be the J dimensional parameter vector. Let S be the set of state space points and let s be
an element of S.Let A be the set of all possible actions and let a be an element of A. We assume
A to be finite to study discrete choice models.

The value of choice a at parameter θ and state vector s is,

V(s, a, �, θ) = ©U(s, a, �a, θ) + βE�0
£
V (s0, �0, θ)

¤ª
(1)

where s0 is the next period’s state variable, U is the current return function. Let � be a vector
those a th element �a is a random shock to current returns to choice a. We assume that � follows
a multivariate distribution F� (�, θ), which is independent over time. β is the discount factor. The
expectation is taken with respect to the next period’s shock �0. We assume that the next period
state variable s0 is a deterministic function of current period state variable s, current period action
a, and parameter θ1. That is,

s0 = s0(s, a, θ).

The value function is defined to be as follows.

V (s, �, θ) = max
a∈A

V(s, a, �, θ)
We assume that the dataset for estimation includes variables which corresponds to state vector s
and choice a in our model but the choice shock � is not observed. That is, the observed data is
YT ≡

©
sdτ , a

d
τ , F

d
ªT
τ=1

2, where
adτ = argmax

a∈A
V(sdτ , a, �, θ)

F d = U(sdτ , a
d
τ , �adτ , θ) if

³
sdτ , a

d
τ

´
∈ Ψ

0 otherwise

the current period return is observable in the data only when the pair of state and choice variables
belongs to the set Ψ. In the entry/exit problem of firms that we discuss later, profit of a firm
is only observed when the incumbent firm stays in. In that case, Ψ is a set whose state variable
is being an incumbent and the choice variable is staying in. Let π() be the prior distribution of
θ. Furthermore, let L(YT |θ) be the likelihood of the model, given the parameter θ and the value
function V (), which is the solution of the Dynamic Programming problem. Then, we have the
following posterior distribution function of θ.

P (θ|YT) = π(θ)L(YT |θ) (2.)

Because � is unobserved to the econometrician, the likelihood is an integral over ² ≡ {�τ}Tτ=1.
That is, if we define L(YT |², θ) to be the likelihood conditional on (², θ) and F (²|θ) to be the
distribution function of ², then

1This is a simplifying assumption for now. Later in the paper, we study random dynamics as well.
2We denote any variables with d superscript to be the data.

5

L(YT |θ) =
Z

L(YT |², θ)dF (²|θ)

The value function enters into the choice probability as follows.

P
h
a = adi |sdi , V, θ

i
= Pr

·b�i : adi = argmax
a∈A

V(sdi , a,b�i, θ)¸
Choice probability is a component of the likelihood increment of the sample i. Below we describe
the various estimation approaches that are possible, including the Bayesian dynamic programming
algorithm we propose.

2.1 The Maximum Likelihood Estimation

The conventional estimation procedure of the dynamic programming problem consists of two main
steps. First is the solution of the dynamic programming problem and the construction of the
likelihood, which is called “the inner loop” and second is the estimation of the parameter vector,
which is called “the outer loop”.

1. Dynamic Programming Step: Given parameter vector θ, we solve the Bellman equation,
given by equation (1). This typically involves several additional steps.

(a) First, the random choice shock, � is drawn a fixed number of times, say, M , generating
�(m),m = 1, ...,M . At iteration 0, set initial guess of the value function to be, for
example, zero. That is, V (0)(s, �(m), θ) for every s ∈ S, �(m). We also let the expected
value function (Emax function) to be bE�0

£
V (0)(s, �0, θ)

¤
= 0 for every s ∈ S.

(b) Assume we are at iteration t of the DP algorithm. Given s ∈ S and �(m), the value of
every choice a ∈ A is calculated. For the future expected value function (Emax function),
we use the approximated expected value function bE�0

£
V (t−1)(s0, �0, θ)

¤
computed at the

previous iteration t− 1 for every s0 ∈ S. Hence,

V(t)(s, a, �(m), θ) =
n
U(s, a, �(m)a , θ) + β bE�0

h
V (t−1)(s0, �0, θ)

io
.

This yields the value function,

V (t)(s, �(m), θ) = max
a∈A

V(t)(s, a, �(m), θ). (3)

The above calculation is done for every s ∈ S and �(m), m = 1, ...,M .

c. The approximation for the expected value function is computed by taking the average
of value functions over simulated choice shocks as follows.

bE�0
h
V (t)(s0, �0, θ)

i
≡ 1

M

MP
m=1

V (t)(s0, �(m), θ) (4)

6

Steps b) and c) have to be done repeatedly for every state space point s ∈ S. Further-
more, all three steps have to be repeated until the value function converges. That is, for
a small δ > 0, ¯̄̄

V (t)(s, �(m), θ)− V (t−1)(s, �(m), θ)
¯̄̄
< δ

for all s ∈ S and m = 1, ..,M .

2. Likelihood Construction

Computationally, the most demanding part of the likelihood construction is the derivation
of the choice probability P

£
a = adi |sdi , V, θ

¤
. For example, suppose that the per period return

function is specified as follows.

U(s, a, �(m)a , θ) = eU(s, a, θ) + �(m)a

where eU(s, a, θ) is the deterministic component of the per period utility. Also, denote,
eV(t)(s, a, θ) = neU(s, a, θ) + β bE�0

h
V (t−1)(s0, �0, θ)

io
to be the deterministic component of the value of choosing action a. Then,

P
h
adi |sdi , V, θ

i
= P

h
�a − �adi

≥ eV(t)(s, a, θ)− eV(t)(s, adi , θ); a 6= adi |sdi , V, θ
i

which becomes a multinomial probit specification when the error term � is assumed to follow
a joint normal distribution.

3. Maximization routine

Now, supppose we have K parameters to estimate. In a typical Maximum Likelihood esti-
mation routine, where one uses Newton hill climbing algorithm, likelihhood is derived under
the original parameter vector θ(t) and under the perturbed parameter vector θ(t) + ∆θj ,
j = 1, ...,K. The perturbed likelihood is used together with the original likelihood to derive
the new direction of the hill climbing algorithm. This is done to derive the parameters for
the iteration t + 1, θ(t+1). That is, during a single ML estimation routine, the DP problem
needs to be solved in full K + 1 times. Furthermore, often the ML estimation routine has to
be repeated many times until convergence is achieved.

During a single iteration of the maximization routine, the inner loop algorithn needs to be exe-
cuted at least as many times as the number of parameters plus one. Since the estimation requires
many iterations of the maximization routine, the entire algorithm is usually computationally ex-
tremely burdensome. As can be seen from the above discussion, the main difficulty lies in the fact
that the inner loop has to be embedded within the outer loop. The computational burden would
be greatly reduced if one can take the inner loop out of the outer loop so that the two loops can
be computed simultaneously.

7

2.2 The conventional Bayesian MCMC estimation

A major computational issue in Bayesian estimation method is that the posterior distribution,
given by equation (2), is a high-dimensional and complex function of the parameters. Instead of
directly simulating the posterior, we adopt the Markov Chain Monte Carlo (MCMC) strategy and
construct a transition density from current parameter θ to the next iteration parameter θ0, f

¡
θ, θ0

¢
,

which satisfies, among other more technical conditions, the following equality.

P (θ|YT) =
R
f
¡
θ, θ0

¢
P
¡
θ0|YT

¢
dθ0

We simulate from the transition density the sequence of parameters
n
θ(τ)

ot
τ=1

, which is known to

converge to the correct posterior.
Gibbs Sampling is a popular example of the above MCMC strategy that is simple to implement.

Gibbs sampling strategy decomposes the transition density f
¡
θ, θ0

¢
into small blocks, where simu-

lation from each block is straightforward. During each MCMC iteration, we also fill in the missing
�(t) following the Data Augmentation strategy (See Tanner and Wong (1987) for more details of
Data Augmentation).

The conventional Bayesian estimation method proceeds in the following three main steps.
Dynamic Programming Step: Given parameter vector θ(t), the Bellman equation, given by

equation (1), is iterated until convergence. This solution algorithm for the Dynamic Programming
Step is similar to the Maximum Likelihood algorithm discussed above.

Data Augmentation Step: Since data is generated by a discrete choice model, the observed
data is YT ≡

©
sdτ , a

d
τ , F

d
ªT
τ=1
, which does not include the latent shock ² ≡ {�τ}Tτ=1. In order to

’integrate out’ the latent shock, we simulate ². Since the optimal choice is given as adi in the data,
we need to simulate ² subject to the constraint that for every sample i, given sdi , a

d
i is the optimal

choice. That is,

adi = argmax
a∈A

V(sdi , a,b�i, θ(t))
where b�i is the data augmented shock for sample i.

Gibbs Sampling Step: Draw the new parameters θ(t+1) as follows:
Suppose the first j − 1 parameters have been updated (θ1 = θ

(t+1)
1 , ..., θj−1 = θ

(t+1)
j−1) but the

remaining J − j + 1 parameters are not (θj = θ
(t)
j , ..., θJ = θ

(t)
J). Then, update j th parameter as

follows. Let
θ(t,−j) ≡

³
θ
(t+1)
1 , ..., θ

(t+1)
j−1 , θ

(t)
j+1, ..., θ

(t)
J

´
.

Then,
θ
(t+1)
j ˜p(t)

³
θ
(t+1)
j |θ(t,−j)

´
,

where

p
³
θ
(t+1)
j |θ(t,−j)

´
≡ π(θ(t,−j), θ(t+1)j)L(YT |b², θ(t,−j), θ(t+1)j)R

π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj)dθj ,

8

and b² is the data augmented shock. Let f ³θ(t), θ(t+1)´ be the transition function of a Markov
chain from θ(t) to θ(t+1) at iteration t. Then, given θ(t), the transition density for the MCMC is as
follows.

f
³
θ(t), θ(t+1)

´
=

JQ
j=1

p
³
θ
(t+1)
j |θ(t,−j)

´
Although MCMC techniques overcome the computational problem of high dimensionality of

parameters, the second problem remains. Since the likelihood is a function of the value function,
during the estimation algorithm, the Dynamic Programming problem needs to be solved and value
function derived at each iteration of the MCMC algorithm. This is a similar problem as discussed
in the application of the Maximum Likelihood method.

We now present our algorithm for estimating the parameter vector θ.We call it the Bayesian Dy-
namic Programming Algorithm. The key innovation of our algorithm is that we solve the dynamic
programming problem and estimate the parameters at the same time, rather than sequentially.

2.3 The Bayesian Dynamic Programming Estimation

Our method is similar to the conventional Bayesian algorithm in that we construct a transition

density f (t)
¡
θ, θ0

¢
, from which we simulate the sequence of parameters

n
θ(τ)

ot
τ=1

such that it

converges to the correct posterior. We use Gibbs Sampling strategy and decompose the transition
density f (t)

¡
θ, θ0

¢
into small blocks, where simulation from each block is straightforward. We also

fill in the missing �(t) following the Data Augmentation strategy. The main difference between
the Bayesian DP algorithm and the conventional algorithm is that during each MCMC step, we
do not solve the DP problem in full. In fact, during each MCMC step, we iterate the Dynamic
Programming algorithm only once. As a result of this, in our algorithm, the transition density
f (t)

¡
θ, θ0

¢
changes with each iteration since the value function changes between iterations. Thus, the

invariant distribution of the transition density f (t)
¡
θ, θ0

¢
in our algorithm varies with each iteration,

and the invariant transition density at iteration t depends on the value function approximations
derived at iteration t, V (t). The invariant distribution for iteration t is

P (t)(θ|YT) = π(θ)L(t)(YT |θ) = π(θ)L(YT |θ, V (t)).

That is, the transition density at iteration t satisfies the following equation.

P (t)(θ|YT) =
R
f (t)

¡
θ, θ0

¢
P (t)

¡
θ0|YT

¢
dθ0

We later prove that the transition density converges to the true dencity in probability as t → ∞.
That is,

f (t)
¡
θ, θ0

¢→ f
¡
θ, θ0

¢
for any θ, θ0 ∈ Θ. Furthermore, we prove that the parameter simulations based on the MCMC using
the above sequence of transition densities converges in probability to the parameter simulation
generated by the MCMC using the true transition density f (., .).

9

A key issue in solving the DP problem is the way the expected value function (or the Emax
function) is approximated. In conventional methods, this approximation is given by equation (4).
In contrast, we approximate the emax function by averaging over a subset of past iterations. Let

Ω(t) ≡
n
�(τ), θ(τ), V (τ)

ot−1
τ=1

be the history of shocks and parameters upto the previous iteration

t− 1. Let V(t)(s, a, �(t), θ(t),Ω(t)) be the value of choice a and let V (t)(s, �(t), θ(t),Ω(t)) be the value
function derived at iteration t of our solution/estimation algorithm. Then, the value function and

the approximation
∧
E
(t)

�0
£
V (s0, �0, θ)|Ω(t)¤ for the expected value function E�0 [V (s

0, �0, θ)] at iteration
t are defined recursively as follows.

∧
E
(t)

�0
h
V (s0, �0, θ)|Ω(t)

i
≡

N(t)X
n=1

V (t−n)(s0, �(t−n), θ(t−n) | Ω(t−n)) Kh(θ
(t) − θ(t−n))PN(t)

k=1 Kh(θ
(t) − θ(t−k))

(5)

and

V(t−n)(s, a, �(t−n), θ(t−n),Ω(t−n)) =
(
U(s, a, �(t−n)a , θ(t−n)) + β

∧
E
(t−n)
�0

h
V (s0, �0, θ(t−n))|Ω(t−n)

i)

V (t−n)(s, �(t−n), θ(t−n) | Ω(t−n)) =Maxa∈A
n
V(t−n)(s, a, �(t−n), θ(t−n) | Ω(t−n))

o
where Kh() is a kernel with bandwidth h > 0. That is,

Kh(u) =
1

h
K(

u

h
)

where K is a nonnegative continuous, bounded and symmetric real function which integrates to
one. i.e.

R
K(u)du = 1. Furthermore, we assume that

R
uK(u)du < ∞. The approximated

expected value function is the weighted average of value functions of N(t) past iterations. The
sample size of the average, N(t), increases with t. Futhermore, we let t−N(t) →∞ as t→∞ as
well. The weights are high for the value functions at iterations with parameters close to the current
parameter vector θ. This is similar to the idea of Pakes and McGuire (2002), where the expected
value function is the average of the past N iterations as well. In their algorithm, averages are
taken only over the value functions that have the same state variable as the current state variable
s. In our case, averages are taken over the value functions that have the same state variable as the
current state variable s0 as well as parameters that are close to the current parameter θ.

We now describe the complete Bayesian Dynamic Programming algorithm at iteration t. Sup-

pose that
©
�(τ)
ªt
τ=1
,
n
θ(τ)

ot
τ=1

are given and for all discrete s ∈ S,
n
V (τ)(s, �(τ), θ(τ))

ot
τ=1

is also

given. Then, we update the value function and the parameters as follows.

1. Bellman Equation Step: For all s ∈ S, derive
∧
E
(t)

�0
h
V (s0, �0, θ(t))|Ω(t)

i
defined above. Also,

simulate the value function by drawing �(t) to derive

10

V(t)(s, a, �(t), θ(t)) =
(
U(s, a, �(t)a , θ(t)) + β

∧
E
(t)

�0
h
V (t−1)(s0, �0, θ(t))|Ω(t)

i)

V (t)(s, �(t), θ(t)) = max
a∈A

V(t)(s, a, �(t), θ(t))

2. Data Augmentation Step: We simulate ² subject to the constraint that for every sample
i, given sdi , a

d
i is the optimal choice. That is,

adi = argmax
a∈A

V(t)(sdi , a,b�i, θ(t))
where b�i is the data augmented shock for sample i. This step is the same as that of the

conventional Bayesian estimation.

3. Gibbs Sampling Step: This step again is very similar to that of the conventional Bayesian
estimation. Therefore, we adopt the notation used there. Draw the new parameters θ(t+1) as
follows:

Suppose the first j − 1 parameters have been updated (θ1 = θ
(t+1)
1 , ..., θj−1 = θ

(t+1)
j−1) but the

remaining J − j + 1 parameters are not (θj = θ
(t)
j , ..., θJ = θ

(t)
J). Then, update j th parameter as

follows.
θ
(t+1)
j ˜p(t)

³
θ
(t+1)
j |θ(t,−j)

´
,

where

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
≡ π(θ(t,−j), θ(t+1)j)L(YT |b², θ(t,−j), θ(t+1)j , V (t))R

π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj , V (t))dθj ,

and b² is the data augmented shock. Then, given θ(t), the transition density for the MCMC is as
follows.

f (t)
³
θ(t), θ(t+1)

´
=

JQ
j=1

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
We repeat Steps 1 to 3 until the sequence of the parameter simulations converges to a station-

ary distribution. In our algorithm, in addition to Dynamic Programming and Bayesian methods,
nonparametric kernel techniques are also used to approximate the value function. Notice that con-
vergence of kernel based approximation is not based on the large sample size of the data, but based
on the number of Bayesian DP iterations.

It can be seen from the above description of the steps, that the Bellman equation step (Step 1) is
only done once during a single estimation algorithm. Hence, the Bayesian DP algorithm avoids the
computational burden of solving for the DP problem during each estimation step, which involves
repeated evaluation of the Bellman equation.

11

2.4 Theoretical Results

Next we show that under some mild assumptions, our algorithm generates a sequence of parameters
θ(1), θ(2), ... which converges in probability to the correct posterior distribution.

1. Assumption 1: Parameter space Θ ∈ RJ is compact, i.e. closed and bounded in the
Euclidean space RJ .

This is a standard assumption used in proving the convergence of MCMC algorithm. See, for
example, McCullogh and Rossi (1994). It is often not necessary but simplifies the proofs.

2. Assumption 2: For any s ∈ S, a ∈ A, and �, θ ∈ Θ, |U(s, a, �, θ)| < MU for some MU > 0,
and U() is continuously differentiable.

3. Assumption 3: We assume that β is known and β < 1

4. Assumption 4: For any s ∈ S, � and θ ∈ Θ, V (0)(s, �, θ) < MI for some MI > 0.

Assumptions 2 and 3, and 4 jointly make V (s, �(t), θ(t)), and hence
∧
E�0

h
V (s0, �0, θ(t))|Ω(t)

i
, t =

1, ... uniformly bounded, and continuously differentiable.

5. Assumption 5: Given V being uniformly bounded, π, L satisfy the following: π(θ) is positive
and bounded for any θ ∈ Θ and for any given ², L(YT |², θ, V) > 0 and bounded for any θ ∈ Θ.

6. Assumption 6: The support of � is compact.

7. Assumption 7: The bandwidth h is a function of N and h(N) → 0, Nh(N)2 → ∞ as
N →∞.

8. Assumption 8: For any θ ∈ Θ, adi , sdi , i = 1, ..., I, V ,

P
h
a = adi |sdi , V, θ

i
= Pr

·b�i : adi = argmax
a∈A

V(sdi , a,b�i, θ)¸ > 0
9 Assumption 9: Define the sequence t(l), eN(l) as follows. For some t > 0, define t(1) = t,
and eN(1) = N(t). Let t(2) be such that t(2)−N(t(2)) = t(1) + 1. Such t(2) exists from the
assumption that N(t) is nondecreasing in t and t − N(t) → ∞. Also, let eN(2) = N(t(2)).
Similarly, for any l > 2, let t(l + 1) be such that t(l + 1) − N(t(l + 1)) = t(l) + 1, and
let eN(l + 1) = N(t(l + 1)). Assume that there exists a finite constant A > 0 such thateN(l + 1) < AN(l).

Now, we state the main theorem of the paper.
Theorem 1
Suppose assumptions 1 to 9 are satisfied for V (t), π, L, � and θ. Then, the sequence of approx-

imated value function V (t)(s, �, θ) converges in probability to V (s, �, θ) as t→∞ and h→ 0. Also,
∧
E�0

h
V (t−1)(s0, �0, θ(t))|Ω(t)

i
converges to E�0 [V (s

0, �0, θ)] in probability uniformly.

12

Proof of Theorem 1 is discussed in the Appendix.
Notice that

f (t)
³
θ(t), θ(t+1)

´
=

JQ
j=1

p(t)
³
θ
(t+1)
j |θ(t,−j)

´

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
≡ π(θ(t,−j), θ(t+1)j)L(YT |b², θ(t,−j), θ(t+1)j , V (t))R

π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj , V (t))dθj
Let

f
³
θ(t), θ(t+1)

´
=

JQ
j=1

p(t)
³
θ
(t+1)
j |θ(t,−j)

´

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
≡ π(θ(t,−j), θ(t+1)j)L(YT |b², θ(t,−j), θ(t+1)j , V)R

π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj , V)dθj
Then, because V (t) → V in probability uniformly, and because of the compactness of Θ and

support of �, Theorem 1 implies that f (t)
¡
θ, θ0

¢
converges to f

¡
θ, θ0

¢
in probability uniformly.

Theorem 2
Suppose assumptions 1 to 9 are satisfied for V (t), π, L, � and θ. Suppose θ(t), t = 1, ... is a

Markov chain with the transition density function f (t) which converges to f in probability uniformly

as t→∞ and h→ 0. Then, θ(t) converges to eθ(t) in probability, where eθ(t) is a Markov chain with
transition density function being f .

Proof of theorem 2 is shown in Appendix 1. Despite the lengthy formal proofs, the basic logic is
more straightforward. First, suppose the parameter θ(t) stays fixed at a value θ∗ for all iterations.
Then, equation (5) becomes as follows.

bE�0
h
V (s0, �0, θ∗)|Ω(t)

i
=

1

N(t)

N(t)X
n=1

V (t−n)(s0, �(t−n), θ∗)

Then our algorithm boils down to a simple version of the machine learning algorithm discussed
in Pakes and McGuire (2001) and Bertsekas and Tsitsiklis (1996). They approximate the expected
value function by taking the average over all past value function iterations whose state space point
is the same as the state space point s0. Bertsekas and Tsitsiklis (1996) discuss the convergence
issues and show that under some assumptions the sequence of the value functions from the machine
learning algorithm converges to the true value function almost surely, hence in probability. Now,
instead of θ(t) being constant at θ∗, assume that for any t = 1, 2, ... , θ(t) stays within a small
open ball around θ∗. Then, after some iterations, the value functions derived from the Dynamic
programming algorithm will move closely around the true value function for the parameter θ∗ most
of the time, because of continuity of value function. Now, let us reconsider the original Bayesian
Dynamic Programming algorithm. Because of the assumptions, for any parameter vector θ ∈ Θ,
the Bayesian MCMC algorithm will produce a sequence of parameters which contains a subsequence
θ(τ t) that stays within a small open ball around θ. Because of the compactness, every open cover of

13

Θ has a subcover, hence after some iterations, the solution of the Dynamic Programming problem
will move closely around the true value function uniformly over Θ, most of the time.

Our simultaneous solution and estimation algorithm also can be applied to other settings of
dynamic discrete choice models, with some minor modifications. One example is Rust (1997)
Random grid approximation. There, given continuous state space vector s, and action a and
parameter θ, the transition function from state vector s to next period state vector s0 is defined to
be fs(s0|a, s, θ). Then, the Dynamic Programming part of our algorithm is defined as below.

At iteration t, The value of choice a at parameter θ, state vector s, shock � is define to be as

V(t)(s, a, �, θ,Ω(t)) =
½
U(s, a, �a, θ) + β

∧
Es0,�0

h
V (s0, �0, θ)|Ω(t)

i¾
where s0 is the next period state varible, which is assumed to follow the transition function

fs(s
0|a, s, θ).

∧
Es0,�0

£
V (s0, �0, θ)|Ω(t)¤ is defined to be the approximation for the expected value func-

tion. Furthermore, the value function is defined to be as follows.

V (t)(s, �, θ,Ω(t)) = max
a∈A

V(t)(s, a, �a, θ,Ω(t))

Let θ(t−n) be the parameter vector, �(t−n) be the shock at iteration t−n, and let Ω(t) ≡
n
�(τ), θ(τ)

ot−1
τ=1
.

Furthermore, let Kh(.) be the kernel function with bandwidth h. Then,
∧
Es0,�0

£
V (s0, �0, θ)|Ω(t)¤ is

defined to be as follows.

∧
Es0,�0

h
V (s0, �0, θ)|Ω(t)

i
≡

N(t)X
n=1

V (t−n)(s(t−n), �(t−n), θ(t−n),Ω(t−n))
fs

³
s(t−n)|a, s, θ(t−n)

´
Kh(θ

(t) − θ(t−n))PN(t)
k=1 fs

³
s(t−k)|a, s, θ(t−k)

´
Kh(θ

(t) − θ(t−k))

s(τ), τ = 1, 2, ... are drawn randomly from an i.i.d. distribution. Notice that unlike Rust (1997),
we do not need to fix the random grid points of the state vector throughout the entire estimation
exercise. In fact, we could draw different state vector for each solution/estimation iteration. Hence,
even though we only draw one state vector s(τ)at each iteration, the number of random grid points is
N(t), which can be made arbitrarily large when we increase the number of iterations. In Rust (1997),
if the grid size is N , then the number of computations required for each Dynamic Programming
iteration is N . Hence, at iteration τ , the number of Dynamic Programming computations that
is required is Nτ . In our case as long as τ > N(t), the total number of Dynamic Programming
computation required is τ , which does not depend on the grid size. In other words, the accuracy
of the Dynamic Programming computation automatically increases with the iteration.

Rust (1997) assumes that the transition density function fs(s0|a, s, θ) is not degenerate. That is,
we cannot use the random grid algorithm if the transition from s to s0, given a, θ is deterministic.
Similarly, it is well known that the random grid algorithm becomes inaccurate if the transition

14

density has a small variance. In those cases, several versions of polynomial based expected value
function (Emax function) approximation have been used. Keane and Wolpin (1994) approximate
the Emax function using polynomials of deterministic part of the value functions for each choice
and the state variables. Imai and Keane (2004) use Chebychev polynomials of state variables. It is
known that in some cases, global approximation using polynomials can be numerically unstable and
exhibit “wiggling”. Here, we propose a kernel based local interpolation approach to Emax function
approximation. The main problem behind the local approximation has been the computational
burden of having a large number of grid points. As pointed our earlier, in our solution/estimation
algorithm, we can make the number of grid points arbitrarily large by increasing the total number
of iterations, even though the number of grid points per iteration is one.

At iteration t, The value of choice a at parameter θ, state vector s, shock � is define to be as

V(t)(s, a, �, θ,Ω(t)) =
½
U(s, a, �, θ,Ω(t)) + β

∧
Es0,�0

h
V (s0, �0, θ)|Ω(t)

i¾
where s0 is the next period state varible, which is assumed to be a deterministic function of s, a,
and θ. That is,

s0 = s0(s, a, θ)
∧
E�0

£
V (s0, �0, θ)|Ω(t)¤ is defined to be the approximation for the expected value function. Further-

more, the value function is defined to be as follows.

V (t)(s, �, θ,Ω(t)) = max
a∈A

V(t)(s, a, �, θ,Ω(t)).
Furthermore, let Kh(.) be the kernel function with bandwidth h. Let Then, it is defined to be as
follows.

∧
E�0

h
V (s0, �0, θ)|Ω(t)

i
≡

N(t)X
n=1

V (t−n)(s(t−n), �(t−n), θ(t−n),Ω(t−n))
Kh

¡
s0 − s(t−n)

¢
Kh(θ

(t) − θ(t−n))PN(t)
k=1 Kh

¡
s0 − s(t−k)

¢
Kh(θ

(t) − θ(t−k))

3 Examples

We estimate a simple dynamic discrete choice model of entry and exit, with firms in competitive
environment.3 The firm is either an incumbent (I) or a potential entrant (O). If the incumbent
firm chooses to stay, its per period return is,

RI,IN (Kt, �t, θ) = αKt + �1t,

where Kt is the capital of the firm, �t = (�1t, �2t) is a vector of random shocks, and θ is the vector
of parameter values. If it chooses to exit, its per period return is,

3For an estimation exercise based on the model, see Roberts and Tybout (1997).

15

RI,OUT (Kt, �t, θ) = δx + �2t

where δx is the exit value to the firm. Similarly, if the potential entrant chooses to enter, its per
period return is,

RO,IN (Kt, �t, θ) = −δE + �1t

and if it decides to stay out, its per period return is,

RO,OUT (Kt, �t, θ) = �2t.

We assume the random component of the current period returns to be distributed i.i.d normal
as follows.

�lt ˜ N(0, σl)

The level of capital Kt evolves as follows.

lnKt+1 = b1 + b2 lnKt + ut+1,

where

ut ˜ N(0, σu),

if the incumbent firm decides to stay in, and

lnKt+1 = be + ut+1,

if the potential entrant decides to enter.
Now, consider a firm who is an incumbent at the beginning of period t. Let VI(Kt, �t, θ) be the

value function of the incumbent with capital stock Kt, and VO(Kt, �t, θ) be the value function of the
outsider, who has capital stock 0. The Bellman equation for the optimal choice of the incumbent
is:

VI(Kt, �t, θ) =Max{VI,IN (Kt, �t, θ), VI,OUT (Kt, �t, θ)}.
where,

VI,IN (Kt, �t, θ) = RI,IN (Kt, �1t, θ) + βEt+1VI(Kt+1(Kt, ut+1), �t+1, θ)

is the value of staying in during period t. Similarly,

VI,OUT (Kt, �t, θ) = RI,OUT (Kt, �1t, θ) + βEt+1VO(0, �t+1, θ)

is the value of exiting during period t . The Bellman equation for the optimal choice of the outsider
is:

16

VO(0, �t, θ) =Max{VO,IN (0, �t, θ), VO,OUT (0, �t, θ)}.
where,

VO,IN (0, �t, θ) = RO,IN (0, �1t, θ) + βEt+1VI(Kt(0, ut+1), �t+1, θ),

is the value of entering during period t and

VO,OUT (0, �t, θ) = RO,OUT (0, �1t, θ) + βEt+1VO(0, �t+1, θ)

is the value of staying out during period t. Notice that the capital stock of an outsider is always 0.
The parameter vector θ of the model is (δx, δE, α, β, σ1, σ2, σu, b1, b2.be).The state variables are

the capital stock K, the parameter vector θ and the status of the firm, idi,t ∈ {IN,OUT}, that is,
whether the firm is an incumbent or a potential entrant.

We assume that for each firm, we only observe the capital stock, profit and the entry/exit status
over T periods. That is, we know

{Kd
i,t, π

d
i,t, i

d
i,t}t=1,Ti=1,Nd

where,

πdi,t = αKd
i,t + ε1t,

if the firm stays in and 0 otherwise.
We assume the prior of the exit value and entry cost to be normally distributed as follows.

δx ˜ N(δx, A
−1
x)

δE ˜ N(δi, A
−1
E)

where δx, δi are the prior means and Ax, AE are the prior precision (inverse of variance) of the exit
value and the entry cost, respectively.

For parameters α, b1, b2 and be, we assume the priors to be uninformative.
We also assume independent Chi squares prior for the precision of the shocks �1 and u which is

the inverse of their variance, i.e. h�1 = (σ21)
−1, for �1. That is,

s1
2h�1 ˜ χ

2(ν�1),

where s1
2 is a parameter and ν�1 is the degree of freedom. Similarly,

su
2hu ˜ χ

2(νu).

Furthermore, .

sη
2hη ˜ χ

2(νη).

where η = �1 − �2.

17

Below, we explain the estimation steps in detail.

Bellman Equation Step
In this step, we derive the value function for the next iteration, i.e., V (s+1)Γ (K, �(s), θ(s),Ω(s)).

1) Suppose we already have calculated the approximation for the expected value function, where
the expectation is over the choice shock �, that is, bE(s)� VΓ(K

0(K,u(s)), �, θ(s)|Ω(s)). To further
integrate the value function over the capital shock u, we use the random grid integration
method of Rust (1997). That is, given we have drawn M i.i.d. capital stock grids Km,
m = 1, ..,M from a given distribution, we take the weighted average as follows,

bE(s) hVΓ(K 0(K,u), �, θ(s))|Ω(s)
i
=

MX
m=1

bE(s)�

h
V
(s)
Γ (Km, �, θ

(s))|Ω(s)
i
f(Km|K, θ(s)).

where f(Km|K, θ(s)) is the capital transition function from K to Km. In this example, the
random grids remain fixed throughout the estimation.

2) Draw �(s) = (�
(s)
1 , �

(s)
2).

3) Given �(s) and bE(s)VΓ(K, �, θ(s)|Ω(s)), solve for the Bellman equation, that is, solve the decision
of the incumbent (whether to stay or exit) or of the entrant (whether to enter or stay out)
and derive the value function corresponding to the optimal decisions:

V
(s+1)
Γ (K, �(s), θ(s),Ω(s)) = Max{RΓ,IN (K, �

(s)
1 , θ(s)) + β bE(s) hVI(K 0(K,u), �, θ(s))|Ω(s)

i
,

RΓ,OUT (K, �
(s)
2 , θ(s)) + β bE(s) hVO(K 0(K,u), �, θ(s))|Ω(s)

i
}

Gibbs Sampling and Data Augmentation Step
Here, we describe how the new parameter vector θ(s+1) is drawn.Let the deterministic values

for the incumbent be defined as follows:

V I,IN (K, θ(s),Ω(s)) = α(s)K + β bE(s) hVI(K 0, �, θ(s))|Ω(s)
i
,

and

V I,OUT (K, θ(s),Ω(s)) = δ(s)x + β bE(s) hVO(0, �, θ(s))|Ω(s)i .
Similarly, for the potential entrant, we define

V O,IN (K, θ(s),Ω(s)) = −δ(s)E + β bE(s) hVI(K0, �, θ
(s))|Ω(s)

i
,

and

V O,OUT (K, θ(s),Ω(s)) = β bEsVO(VO(0, �, θ
(s))|Ω(s)).

Then, at iteration s, we go through the following two steps.

18

1) Data Augmentation Step on Entry and Exit choice:

Define current revenue difference net of αsKd
i,t by

r
(s+1)
i,t ≡ RΓ,OUT (K

d
i,t, �2,i,t, θ

(s))−RΓ,IN (K
d
i,t, �1,i,t, θ

(s)) + α(s)Kd
i,t ≡ g(Kd

i,t, �1,i,t − �2,i,t, θ
(s)).

The empirical economist does not observe the above statistics directly because he can only
obtain data on entry and exit decisions idi,t and profits, not the current revenues themselves.
Nonetheless, the empirical economist can indirectly recover rs+1i,t by simulating and augment-
ing the shock ηi,t = �1,i,t−�2,i,t. But the simulation of ηi,t has to be consistent with the actual
choices that the firm makes. That is, if, in the data, the firm i at period t either stays in or
enters, that is, idi,t = IN , then draw ηi,t = �1,i,t − �2,i,t such that

bη(s+1)i,t ≥ V Γ,OUT (K
d
i,t, θ

(s),Ω(s))− V Γ,IN (K
d
i,t, θ

(s),Ω(s)).

If, in the data, the firm i either stays out or exits, that is, idi,t = OUT , then draw ηi,t such
that

bη(s+1)i,t < V Γ,OUT (K
d
i,t, θ

(s),Ω(s))− V Γ,IN (K
d
i,t, θ

(s),Ω(s)).

Once the shock bηi,t is generated, he can proceed to recover the entry cost and exit value
parameters by conducting Bayesian regression of r(s+1)i,t on entry and exit decisions, using the
following linear relationship.

r
(s+1)
i,t = δ

(s)
E I(Γi,t = O) + δ(s)x I(Γi,t = I) + bηi,t.

Data Augmentation Step on Profit: If the firm stays out or exits, then its potential
profit is not observable. In that case, we simulate the profit as follows:

π
(s+1)
i,t = α(s)Kd

i,t +b�1,i,t.
We draw b�1,i,t conditional on bηi,t as follows:

b�(s+1)1,i,t = γ
(s)
1 bηi,t + vi,t,

where
vi,t˜N(0, σ

2
v),

σ2v = σ(s)2
1
− σ(s)4

1

σ
(s)2
1 + σ

(s)2
2

=
σ(s)2
1

σ(s)2
2

σ
(s)2
1 + σ

(s)2
2

19

and

γ1 =
Cov(�1t, ηt)

σ2η
=

σ(s)2
1

σ
(s)2
1 + σ

(s)2
2

.

Once the profit for firms who exited or stayed out is recovered, we can recover productivity
parameters via a simple Bayesian regression.

2) Draw the new parameter vector θ(s+1) from the posterior distribution.

We denote the stacked matrix I with i(T − 1) + t th row as follows:

Ii(T−1)+t = [Idi,t(IN), I
d
i,t(OUT)].

where Idi,t(IN) = 1 if the firm either enters or decides to stay in, and 0 otherwise, and
Idi,t(OUT) = 1 if the firm either exits or stays out and 0 otherwise. Similarly, we denote

w(s+1), π(s+1) to be the stacked vector of w(s+1)i,t and π
(s+1)
i,t .

We draw δ(s+1) =
h
δ
(s+1)
x , δ

(s+1)
E

i0
conditional on (w(s+1), h(s)η) as follows.

δ(s+1)|(w(s+1), h(s)η) ˜ N(δ,Aδ),

where,

Aδ = (Aδ + h(s)η I
0I)−1

and
δ = A

−1
δ (Aδδ + h(s)η I

0w(s+1)).

We draw the posterior distribution of hη from the following χ2 distribution. That is,

[sη
2 +

X
i,t

eη2i,t]h(s+1)η |(w(s+1), δ(s+1))˜χ2(NT + ν),

where eηi,t is the “residual”, that is,
eηi,t = w

(s+1)
i,t − δ

(s+1)
E Idi,t(OUT)− δ(s+1)x Idi,t(IN).

The above Gibbs sampling data augmentation steps are an application of McCulloch and
Rossi (1994).

Next, we draw α(s+1) conditional on (π(s+1), h(s)a). Denote

kt = ln(Kt), k−1 = [k11, k12, ..., k1T−1, ..., kNd1, kNd2, ..., kNdT−1]

20

and
k = [k12, k13, ..., k1T , ..., kNd2, kNd3, ..., kNdT].

Then, draw α(s+1) from the following normal distribution.

α(s+1)|(π(s+1), h(s)α) ˜ N(α,Aα),

where,

Aα = (Aα + h(s)α k
0k)−1

and
α = A

−1
α (Aαα+ h(s)α k

0π(s+1)).

We draw the posterior distribution of h�1 from the following χ2 distribution. That is,

[s�1
2 +

X
i,t

g�1,i,t2]h(s+1)�1 |(π(s+1), a(s+1))˜χ2(NdT + ν),

where g�1,i,t is the “residual”, that is,
g�1i,t = π

(s+1)
i,t − α(s+1)ki,t.

Furthermore, (σ(s+1)�2)2 or h(s+1)�2 = (σ
(s+1)
�2)−2 can be recovered as follows:

(σ(s+1)�2)2 = (h(s+1)η)−1 − (h(s+1)�1)−1

Next, we draw b(s+1) = [b
(s+1)
1 , b

(s+1)
2]0 conditional on (k, h(s)b) as follows.

b(s+1)|(k(s+1), h(s)α) ˜ N(b, Ab),

where,

Ab = (Ab + h(s)u k
0
−1k−1)

−1

and
b = A

−1
b (Abb+ h(s)u k

0
−1k).

We draw the posterior distribution of hu from the following χ2 distribution. That is,

[su
2 +

X
i,t

eu2i,t]h(s+1)u |(bu(s+1), a(s+1))˜χ2(NdT + ν),

21

where bui,t is the “residual”, that is,
eui,t = kdi,t − b

(s)
1 − b

(s)
2 kdi,t−1.

Expected Value Function Iteration Step

Next, we update the expected value function for iteration s+1, that is, we deriveE(s+1)� VΓ(K, �, θ(s)).
This is an important step in the alogorithm and is closely related to the algorithm of Pakes and
McGuire (2001).

E(s+1)
h
VΓ(K, �, θ(s+1))|Ω(s+1)

i
=

Ps
j=Max{s−N(s),1}

·
1
M

MP
m=1

VΓ(K, �
(j)
m , θ(j),Ω(j))

¸
Kh(θ

(j) − θ(s+1))Ps
j=Max{s−N(s),1}Kh(θ

(j) − θ(s+1))
,

where I() is the indicator function, andK() is the kernel function. We adopt the following Gaussian
kernel:

Kh(θ
(j) − θ(s)) = (2π)−L/2

LY
l=1

exp[−1
2
(
θ
(j)
l − θ

(s)
l

hl
)2].

The expected value function is updated by taking the average over those past N(s) iterations where
the parameter vector θ(j) was close to θ(s+1). The similarity with PM is that the expected value
functions are approximated by averaging over past values of the algorithm, that is, they are never
explicitly calculated. Also, the optimization problem is solved only once between iterations. The
main difference is that past values are weighted according to the distance between their parameter
vectors and the current parameter vector: the shorter is the distance, the higher is the weight.

As discussed before, in principle, only one simulation of � is needed during each solution/estimation
iteration. But that requires the number of past iterations for averaging, i.e. N(s) to be large, which
adds to computational burden. Instead, in our example, we draw � 20 times and take an average.
Hence, when we derive the expected value function, instead of averaging past value functions, we

average over past average value function 1
M

MP
m=1

VΓ(Km, �
(j)
m , θ(j)), where M = 20. This obviously

increases the accuracy per iteration, and reduces the need to have a large N(s). That is partly
why in the below examples, to have N (s) increase up to 2000 turned out to be sufficient for a good
estimation performance.

After the above Bellman equation step, data augmentation step and the expected value func-
tion iteration step, we now have the parameter vector θ(s+1) and the expected value function
E(s+1)V (K, �, θ(s+1),Ω(s+1)) for s+ 1 th iteration. We repeat these steps to derive iteration s+ 2
in the same way as described above for s+ 1 th iteration.

22

4 Simulation and Estimation Exercise.

Denote the true values of θ by θ∗. Thus θ∗ = (δ∗E , δ
∗
x, σ

∗
1
, σ∗

2
, σ∗u, α∗, b∗1, b∗2, b∗e, β

∗).We set the following
parameters for the above model.

δ∗E = 0.4, δ∗x = 0.4, σ∗
1
= 0.4, σ∗

2
= 0.4, σ∗u = 0.4, α∗ = 0.2, b∗1 = 0.2, b∗2 = 0.2, b∗e = −1.0,

β∗ = 0.9.
We first solve the DP problem numerically using conventional numerical methods. Next, we

generate artificial data based on the above DP solution. Then, using the simulated data, we try to
estimate the parameter values using the Bayesian DP estimation method. Below, we briefly explain
how we solved for the DP problem to generate the data. Notice that for data generation, we only
need to solve for the DP problem once, that is, for a fixed set of parameters. Hence, we took time
and made sure that the DP solution is accurate.

Assume that we already know the expected value function of the s th iteration for all capital
grid points.

E�V (Km, �, θ
∗), m = 1, 2, ...,M.

Then, following steps are taken to generate the expected value function for s+ 1 th iteration.

Step 1 Given capital stock K, derive

E(s)VΓ(K
0(K,u), �(s), θ∗) =

MX
m=1

E�V
(s)
Γ (Km, �

(s), θ∗)f(Km|K, θ∗)

for Γ ∈ {I,O}. Here, Km (m = 1, ...,M) are grid points and f(Km|K, θ(s)) is the transition
probability from K to Km

Step 2 Draw the random shocks �l. For a given capital stock K, calculate

VΓ(K, �l, θ
∗) = Max{RΓ,IN (K, �1l, θ

∗) + βE(s)VI(K
0, �, θ∗),

RΓ,OUT (K, �2l, θ
∗) + βE(s)VO(0, �, θ

∗)}

Step 3 Repeat Step 2 L times and take an average to derive the expected value function for the
next iteration.

E(s+1)� VΓ(K, �, θ∗) =
1

L

LX
l=1

VΓ(K, �l, θ
∗).

The above steps are taken for all possible capital grid points, K = K1, ..,KM . In our
simulation exercise, we set the simulation size L to be 1000. The total number of capital grid
points is set to be M = 100.

23

Step 4 Repeat Step 1 to Step 3 until the Emax function converges. That is, for a small δ (in our
case, δ = 0.00001),

Maxm=1,..,M{E(s+1)� VΓ(Km, �, θ
∗), E(s)� VΓ(Km, �, θ

∗)} < δ.

We simulate artificial data of capital stock, profit and entry/exit chocie sequences {Kd
i,t, π

d
i,t, i

d
i,t}t=1,Ti=1,Nd

using the expected value functions derived above. We then estimate the model using the simulated
data with our Bayesian DP routine. We do not estimate the discount factor β. Instead, we set it
at the true value β∗ = 0.9.

4.1 Experiment 1: Basic Model

We first describe the prior distributions of parameters. The priors are set to be reasonably diffuse,
in order to keep the influence on the outcome of the estimation exercise to a minimum.

δx ˜ N(δx, A
−1
x), δx = 0.4, Ax = 1.0,

δE ˜ N(δE, A
−1
E), δE = 0.4, AE = 1.0

α ˜ N(α,A−1α), α = 0.2, Aα = 1.0

s�1
2h�1 ˜ χ

2(ν�1), (s�1
2)−1 = 0.4, v�1 = 400.

sη
2hη ˜ χ

2(νη), (sη
2)−1 = 0.32, vη = 400.

su
2hu ˜ χ

2(νu), su2 = 1.0, vu = 400.

The priors for b1, b2 and be are set to be noninformative.
We set the initial guess of the expected value function to be 0. We set the initial guesses of

the parameters to be the true parameter values given by θ∗. The Gibbs sampling was conducted
10, 000 times. The Gibbs sampler for the simulation with sample size 10, 000 is shown in figures 1
to 9. In estimation experiments with other sample sizes, the Gibbs sampler converged from around
3, 000 iterations as well. The posterior mean and standard errors from the 5, 001 th iteration up
to 10, 000 th iteration are shown in Table 1. The posterior mean of δx and δE are estimated to
be some what away from the true values if the sample size is 2000, but they are estimated to be
reasonably close to the true values for the sample size 5, 000 and 10, 000. Overall, we can see that
as the sample size increases, the estimated values becomes closer to the truth, even though there
are some exceptions.

Figures 1 and 2 show the Gibbs sampler output of parameters δx and δE. Even though the initial
guess is set to be the true value, at the start of the Gibbs sampling algorithm, both parameters
immediately jump to values very close to zero. Notice that these values are the estimates we should

24

expect to get when we estimate the data generated by a dynamic model using a static model.
Because the expected value functions are set to zero initially, the future benefit of being in or
out is zero. Hence, if either exit value or entry cost were big in value, then either entry or exit
choice would dominate most of the time, and thus the model would not predict both choices to be
observed in the data. Notice that with iterations the estimates of the parameters directly affecting
entry and exit choices, such as δx and δE converge to the true value (see Figures 1 and 2). This
is because as we iterate our Bayesian DP algorithm, the expected value functions become closer to
the true value. Because the future values of entry and exit choices converge to the truth, so do the
parameters representing the current benefits and costs of the entry and exit choices, i.e., δx and
δE. This illustrates that our algorithm solves the Dynamic Programming problem and estimates
the parameters simulataneously, and not subsequently.

Figure 3 plots the Gibbs sampler output of the capital coefficient in the profit equation, α. We
can see that there, the value of the first Gibbs sampler jumps from the true value, 0.2 to 0.2367.
The upward bias is due to the sample selection bias. However, immediately after a couple of
iterations, the Gibbs sampler estimates the true value quite accurately. That is, the algorithm can
immediately correct for the sample selection bias even though it has not fully solved the Dynamic
programming problem. The Gibbs sampler of the other parameters are reported in Figures 4 to
9. There, we see that all the parameters stay closely around the true value from the start. In a
separate experiement, we also have conducted experiments where we set the initial values of the
parameters to half the true values and run the Gibbs sampler. As we can see from Table 1, the
results turns out to be hardly different from the original ones. In sum, our Bayesian DP algorithm
initially estimates the static version of the dynamic model. As we iterate the algorithm, expected
value functions become closer to the truth and hence the estimates converge to the true posteriors.
These results confirms the theorems on convergence in section 1 that the estimation algorithm is
not sensitive to the initial values.

25

Table 1: Posterior Means and Standard Errors
(standard errors are in parenthesis)

parameter estimate estimate estimate true value
δx 0.4287 (0.0175) 0.3696 (0.0110) 0.3993 (0.0091) 0.4

δE 0.4792 (0.0182) 0.4074 (0.0116) 0.4182 (0.0085) 0.4

α 0.1992 (0.0070) 0.1964 (0.0048) 0.1951 (0.0043) 0.2

σ1 0.4033 (0.0056) 0.4056 (0.0042) 0.4058 (0.0041) 0.4

σ2 0.3940 (0.0198) 0.3858 (0.0188) 0.3867 (0.0228) 0.4

b1 0.0971 (0.0201) 0.1011 (0.0131) 0.1011 (0.0093) 0.1

b2 0.0882 (0.0370) 0.0978 (0.0239) 0.0966 (0.0173) 0.1

be −0.9932 (0.0141) −0.9799 (0.0086) −0.9920 (0.0062) −1.0
σu 0.4102 (0.0045) 0.4031 (0.0030) 0.4022 (0.0021) 0.4

sample size 2, 000 5, 000 10, 000

CPU time4 18 min.10 sec. 41 min.12 sec. 1 hr. 18 min. 59 sec.

parameter estimate5 true value
δx 0.3774 (0.0087) 0.4

δE 0.3967 (0.0090) 0.4

α 0.1956 (0.0027) 0.2

σ1 0.4053 (0.0035) 0.4

σ2 0.3895 (0.0191) 0.4

b1 0.1010 (0.0103) 0.1

b2 0.0961 (0.0062) 0.1

be −0.9923 (0.0595) −1.0
σu 0.4022 (0.0022) 0.4

sample size 10, 000

CPU time6 1 hr. 19 min. 5 sec.

4.2 Experiment 2: Random Effects

We now report estimation results of a model that includes observed and unobserved heterogeneity.
We assume that the profit coefficient for each firm i, αiis distributed normally with mean µ = 2.0
and standard error σα = 0.04. Furthermore, we include observed characteristics in our model as
well. That is, the transition equation for capital now is

lnKi,t+1 = b1X
d
i + b2 lnKi,t + ui,t+1,

where Xd
i is a firm characteristics observable to the econometrician. In our simulation sample, we

simulate Xd
i from N(1.0, 0.04). Notice that if we use the conventional simulated ML method to

estimate the model, for each firm i we need to draw αi many times, say Mα times, and for each
4The estimation exercise was done on a Sun Blade 2000 workstation.
5This is the results for the different starting values.
6The estimation exercise was done on a Sun Blade 2000 workstation.

26

draw solve the dynamic programming problem with the constant coefficient for capital transition
equation being b1Xd

i . If the number of firms in the data is Nd, then for a single simulated likelihood
evaluation, we need to solve the DP problem NdMα times. This process is computationally so
demanding that most researchers so far have only used finite number of types, typically less than
10, as an approximation of the random effect. Since in our Bayesian DP estimation exercise, the
computational burden of estimating the dynamic model is roughly equivalent to that of a static
model, we can easily accomodate random effects estimation as will be shown below.

We set the prior for αi as follows.

αi|µ ˜ N(µ, τ2)

µ ˜ N(µ, h−1a)

sτ
2τ−2 ˜ χ2(ντ)

Then, if we denote α0 = (α1, ..., αN), π0 = (π11, π12, ..., π1T , ..., πNd1,, πNdT) and

K =


K1 0 · · · 0

0 K2
. . .

...
...

. 0
0 · · · 0 KN


where Kj = [Kj1,Kj2, ...,KjT]. Also, eN is a N by 1 vector of ones.
Then, the prior can be expressed as follows.

α ˜ N
³
eNµ, τ

2IN + h−1a eNe
0
N

´
Let θ(s)−α be defined as parameters not including αi. Below, we briefly describe the differences

between the earlier estimation routine and that which involves random effects.
Data Augmentation Step on Entry and Exit choice: For data augmentation, we need to

generate

r
(s+1)
i,t = RΓ,OUT (K

d
i,t, �2, θ

(s)
−α, α

(s)
i)−RΓ,IN (K

d
i,t, �1, θ

(s)
−α, α

(s)
i)+α

(s)
i Kd

i,t ≡ g(Kd
i,t, �1,i,t−�2,i,t, θ(s)−α, α(s)i).

• To draw ηi,t = �1,i,t − �2,i,t we follow the below data augmentation steps.

ηi,t ≥ V Γ,OUT (K
d
i,t, θ

(s)
−a, a

(s)
i)− V Γ,IN (K

d
i,t, θ

(s)
−a, a

(s)
i).

If, in the data, the firm i either stays out or exits, that is, idi,t = OUT , then draw ηi,t such
that

27

ηi,t < V Γ,OUT (K
d
i,t, θ

(s)
−a, a

(s)
i)− V Γ,IN (K

d
i,t, θ

(s)
−a, a

(s)
i).

As we discussed earlier, once the shock ηi,t is generated, he can proceed to recover the entry

cost and exit value parameters by conducting Bayesian regression of r(s+1)i,t on entry and exit
decisions, using the following linear relationship.

r
(s+1)
i,t = δEI(Γi,t = O) + δxI(Γi,t = I) + ηi,t.

In contrast to the earlier case, to evaluate the entry and exit values, we use different αi for
each firm i.

Data Augmentation Step on Profit: If the firm stays out or exits, then its potential
profit is not observable. In that case, we simulate the profit:

πi,t = α
(s)
i Kt + �1,i,t.

The only difference from the standard case is that the capital coefficient αi is different for
each firm i. We skip discussing the rest of the step because it is the same as before.

Draw the new parameter vector θ(s+1) from the posterior distribution The only
difference in the estimation procedure is for drawing the posterior of αi. The posterior draw
of α for iteration s, α(s+1), can be done from the following distribution.

α(s+1)|
³
π(s),K

´
˜ N

³
α,H

−1
α

´
with

Hα = (σ
(s)
1)

−2K0K+
³
τ2IN + h−1α eNe

0
N

´−1
α = H

−1
α

·³
τ2IN + h−1α eNe

0
N

´−1
eNα+ (σ

(s)
1)

−2K0π
¸

One-Step Bellman Equation and Expected Value Function Iteration Step
The only difference between the earlier case is that we solve the one step Bellman equation

for each firm i separately. The expected value function. E(s+1)� V (K, �, θ
(s+1)
−α , α

(s+1)
i) is derived as

follows.

E(s+1)� VΓ(K, �, θ
(s+1)
−α , α

(s+1)
i)

=

Ps
j=Max{s−N(s),1}

·
1
M

MP
l=1

VΓ(K, �
(j)
l , θ(j),Ω(j))

¸
Kh(θ

(j)
−α − θ

(s+1)
−α)Kh(α

(j)
i − α

(s+1)
i)Ps

j=Max{s−N(s),1}Kh(θ
(j)
−α − θ

(s+1)
−α)Kh(α

(j)
i − α

(s+1)
i)

,

28

We set N(s) to go up to 1000 iterations. The one step Bellman equation is the part where we have
an increase in computational burden. But it turns out that the additional burden is far lighter
than those of computing the DP problem again for each firm i, for each simulation draw of αi as
would be done in Simulated ML estimation strategy.

We set the sample size to be 100 firms for 100 periods, and the Gibbs sampling was conducted
10, 000 times. The Gibbs sampling routine converged after 4, 000 iterations. Table 2 describes the
posterior mean and standard errors from the 5, 001 th iteration up to 10, 000 th iteration.

Table 2: Posterior Means and Standard Errors
(standard errors are in parenthesis)

parameter estimate true value
δx 0.3967 (0.0140) 0.4

δE 0.4058 (0.0131) 0.4

a 0.2086 (0.0053) 0.2

τ 0.0396 (0.0013) 0.04

σ1 0.4027 (0.0053) 0.4

σ2 0.3964 (0.0279) 0.4

b1 0.1006 (0.0137) 0.1

b2 0.1020 (0.0264) 0.1

be −0.9661 (0.0103) −1.0
σu 0.4059 (0.0034) 0.4

sample size 100× 100
CPU time7 10 hrs 47 min 26 sec

Notice that most of the parameters are close to the true values. The computation time is about
11 hours, which roughly corresponds to those required for a Bayesian estimation of a reasonably
complicated static random effects model.

We also conducted some estimation exercise using the conventional simulated ML routine. For
each firm, we simulated αi 100 times (i.e. Mα = 100). When we solve for the DP problem, we
use Monte-Carlo integration to integrate over the choice shock �. We set the simulation size for �
to be 100. A single likelihood calculation took about 35 minues to compute. A single step of the
Newton-Raphson method took 11 likelihood calculations. Since we took numerical derivatives, in
addition to the likelihood evaluation under the original parameter θ, we calculated the likelihood
for the 9 parameter perturbations θ +∆θi, i = 1, ..., 9. After computing the search direction, we
further calculate the likelihood twice to derive the step size. The above computation took us in
total 6 hours and 20 minues. By that time, Bayesian DP routine would have completed its 6, 744
iterations. That is, by the time the conventional ML routine finished its first iteration, the Bayesian
DP routine would have already converged long ago.

Another estimation strategy for the simulated ML could be to expand the state variables of the
DP problem to include both X and a. Then, we have to assign grid points for the 3 dimensional

7The estimation exercise was done on a Sun Blade 2000 workstation.

29

state space points (K,X, a). If we assign 100 grid points per dimension, then we end up having
10, 000 times more grid points than before. Hence, the overall computational burden would be
quite similar to the orginal simulated ML estimation strategy.

4.3 Experiment 3: Infinite Random Grids

As discussed above, instead of fixing the capital grid points throughout the DP solution/estimation
algorithm, we we draw different state vector for each solution/estimation iteration. Hence, even
though we only draw finite state vector grid points K(t)

1 , ...,K
(t)
MK

(in this example, MK = 10),
the number of random grid points can be made arbitrarily large when we increase the number of
iterations. That is, the formula for the expected value function for the firm who stays in or enters
is as follows.

∧
EK0,�0

h
VIN(K

0 (K,u) , �, θ(t+1))|Ω(t+1)
i

≡
N(t)X
n=1

MKP
m=1

"
1

M�

M�P
j=1

V
(t−n)
IN (K(t−n)

m , �
(t−n)
j , θ(t−n),Ω(t−n))

#

×
fK

³
K
(t−n)
m |a,K, θ(t−n)

´
Kh(θ

(t) − θ(t−n))PN(t)
k=1

MKP
m=1

fK

³
K
(t−k)
m |a,K, θ(t−k)

´
Kh(θ

(t) − θ(t−k))

The formula for the expected value function for either the firm who stays out or the firm who
exits is similar to that of example 1, because there is no uncertainty about the future capital stock.

∧
E�0

h
VOUT (0, �, θ

(t+1))|Ω(t+1)
i

≡
N(t)X
n=1

"
1

M�

M�P
j=1

V
(t−n)
OUT (0, �

(t−n)
j , θ(t−n),Ω(t−n))

#
Kh(θ

(t) − θ(t−n))PN(t)
k=1 Kh(θ

(t) − θ(t−k))

We increase the total number of grid points up to 2000.
Table 3 shows the estimation results. We can see that the estimates parameters are close to the

true ones. The entire exercise took about 8 hours.

Table 3: Posterior Means and Standard Errors

(standard errors are in parenthesis)

30

parameter estimate true value
δx 0.4246 (0.0121) 0.4

δE 0.4341 (0.0133) 0.4

a 0.2036 (0.0031) 0.2

σ1 0.4011 (0.0046) 0.4

σ2 0.3946 (0.0198) 0.4

b1 0.1001 (0.0165) 0.1

b2 0.1033 (0.0097) 0.1

be −0.9844 (0.0097) −1.0
σu 0.4018 (0.0039) 0.4

sample size 10, 000

CPU time8 7 hrs39 min 31 sec

4.4 Experiment 4: Continuous State Space with Deterministic Transition

As discussed above, instead of fixing the capital grid points throughout the DP solution/estimation
algorithm, we draw different state vector for each solution/estimation iteration. Hence, even though
we only draw finite state vector grid points K(t)

1 , ...,K
(t)
MK

(in this example, MK = 10), the number
of random grid points can be made arbitrarily large when we increase the number of iterations.

Assume that if the incumbent decides to stay in, the next period capital is

Kt+1 = Kt

If the firm decides to either exit or stay out, then the next period capital is 0, and if it enters, then
the next period capital is

ln (Kt+1) = b1 + ut+1

where
ut+1˜N (0, σu)

That is, the formula for the expected value function for the incument who stays in is as follows.

∧
E�0

h
V (K, �0, θ)|Ω(t)

i
≡

N(t)X
n=1

MKP
m=1

"
1

M�

M�P
j=1

V
(t−n)
IN (K(t−n)

m , �
(t−n)
j , θ(t−n),Ω(t−n))

#
KhK

³
K −K

(t−n)
m

´
Khθ(θ

(t) − θ(t−n))PN(t)
k=1

MKP
m=1

KhK

³
K −K

(t−k)
m

´
Khθ(θ

(t) − θ(t−k))

8The estimation exercise was done on a Sun Blade 2000 workstation.

31

where KhK is the kernel for the capital stock with bandwidth hK . The expected value function for
the entrant is:

∧
EK0,�0

h
VIN(K

0 (u) , �, θ(t+1))|Ω(t+1)
i

≡
N(t)X
n=1

MKP
m=1

"
1

M�

M�P
j=1

V
(t−n)
IN (K(t−n)

m , �
(t−n)
j , θ(t−n),Ω(t−n))

#

×
fK

³
K
(t−n)
m |θ(t−n)

´
Kh(θ

(t) − θ(t−n))PN(t)
k=1

MKP
m=1

fK

³
K
(t−k)
m |θ(t−k)

´
Kh(θ

(t) − θ(t−k))

The formula for the expected value function for either the firm who stays out or the firm who
exits is similar as before:

∧
E�0

h
VOUT (0, �, θ

(t+1))|Ω(t+1)
i

≡
N(t)X
n=1

"
1

M�

M�P
j=1

V
(t−n)
OUT (0, �

(t−n)
j , θ(t−n),Ω(t−n))

#
Kh(θ

(t) − θ(t−n))PN(t)
k=1 Kh(θ

(t) − θ(t−k))

We increase the total number of grid points up to 2000.
Table 4 shows the estimation results. We can see that the estimates parameters are close to the

truth. The entire exercise took about 5 hours.
Table 4: Posterior Means and Standard Errors

(standard errors are in parenthesis)

parameter estimate true value
δx 0.3531 (0.0117) 0.4

δE 0.3688 (0.0126) 0.4

a 0.0979 (0.0041) 0.1

σ1 0.4006 (0.0142) 0.4

σ2 0.4011 (0.0290) 0.4

b1 0.2180 (0.0222) 0.2

σu 0.4005 (0.0142) 0.4

sample size 10, 000

CPU time9 5 hrs 6 min 23 sec

9The estimation exercise was done on a Sun Blade 2000 workstation.

32

5 Conclusion

In conventional estimation methods of Dynamic Discrete Choice models, such as GMM, Maximum
Likelihood or Markov Chain Monte Carlo, at each iteration step, given a new set of parameter
values, the researcher first solves the Bellman equation to derive the expected value function, and
then uses it to construct the likelihood or the moments. That is, during the DP iteration, the
researcher fixes the parameter values and does not “estimate”. We propose a Bayesian estimation
algorithm where the DP problem is solved and parameters estimated at the same time. In other
words, we move parameters during the DP solution. This dramatically increases the speed of
estimation. We have demonstrated the effectiveness of our approach by estimating a simple dynamic
model of discrete entry-exit choice. Even though we are estimating a dynamic model, the required
computational time is in line with the time required for Bayesian estimation of static models.
The reason for the speed is clear. The computational burden of estimating dynamic models has
been high because the researcher has to repeatedly evaluate the Bellman equation during a single
estimation routine, where he keeps the parameter values fixed. We move parameters, i.e. ”estimate”
the model after each Bellman equation evaluation. Since a single Bellman equation evaluation is
computationally no different from computing a static model, the speed of our estimation exercise,
too, is no different from that of a static model.

Another computational obstacle in the estimation of a Dynamic Discrete Choice model is the
Curse of Dimensionality. That is, the computational burden increases exponentially with the in-
crease in the dimension of the state space. In our algorithm, even though at each iteration, the
number of state space points we calculate the Expected value function on is small, the total number
of "effective" state space points we evaluate over the entire solution/estimation iteration, which is
N(t) in our case, grows with the number of Bayesian DP iterations. The number of the Bayesian
DP iterations can be made arbitrarily large without much additional computational cost. And it is
the total number of "effective" state space points that determines accuracy. Hence, our algorithm
moves one step further in overcoming the "Curse of Dimensionality". That is why our nonparmetric
approximation of the expected value function works well under the assumption of continuous state
space even though the transition function of the state variable is not stochastic. In that case, it is
well known that Rust (1997) random grid method faces computational difficulties.

But it is worth mentioning that our algorithm does not come without any cost. Since we are
locally approximating the expected value function nonparametrically, as we increase the number
of parameters, we may face the “Curse of Dimensionality” in terms of the number of parameters
to be estimated. But on this issue, so far we remain fairly optimistic. The reason is because most
dynamic models specify per period return function and transition functions to be smooth and well
behaved. Hence, we know in advance that the value function we need to approximate are smooth,
hence well suited for nonparametric approximation. Furthermore, the simulation exercises in the
above examples show that with a reasonably large sample size, the MCMC simulations are tightly
centered around the posterior mean. Hence, the actual multidimensional area where we need to
apply nonparametric approximation is small.

33

6 References

Aguirreagabiria, Victor and Pedro Mira (2002) “Swapping the Nested Fixed Point Algo-
rithm: A Class of Estimators for Discrete Markov Decision Models. ” Econometrica, Vol.
70, pp. 1519− 1543

Arcidiacono, Peter and John B. Jones (2003)“Finite Mixture Distributions, Sequential Like-
lihood and the EM Algorithm”, Econometrica, , Vol. 71. No. 3, pp. 933− 946

Davidson, James (1994)“Stochastic Limit Theory, ” Oxford University Press.

Erdem, Tulin and Michael P. Keane (1996) “Decision Making under Uncertainty: Capturing
Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets.” Marketing Sci-
ence, Vol. 15 : 1, pp. 1− 20.

Geweke, John and Michael P. Keane (1995) “Bayesian Inference for Dynamic Discrete Choice
Models without the Need for Dynamic Programming.” in Mariano, Scheuermann and Weeks
(eds.), Simulation Based Inference and Econometrics: Methods and Applications, Cambridge
University Press.

Geweke, John, Daniel Houser and Michael P. Keane (1998) “Simulation Based Inference
for Dynamic Multinomial Choice Models.” working paper, University of Arizona.

Haerdle, Wolfgang (1989)“Applied Nonparametric Regression,” Cambridge University Press.

Houser, Daniel (2003)“Bayesian Analysis of Dynamic Stochastic Model of Labor Supply and
Savings”, Journal of Econometrics, Vo. 113 : 2, pp. 289− 335.

Imai, Susumu and Michael P. Keane (2003)“Intertemporal Labor Supply and Human Capi-
tal Accumulation”, forthcoming, International Economic Review.

Imai, Susumu and Kala Krishna (2001) “Employment, Dynamic Deterrence and Crime.” NBER
Working Paper, No. 8281

Keane, Michael P. and Kenneth I. Wolpin (1994)“The Solution and Estimation of Discrete
Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evi-
dence” The Review of Economics and Statistics, Vol. 74 (4), pp. 648− 72

Keane, Michael P. and Kenneth I. Wolpin (1997) “The Career Decisions of Young Men.”
Journal of Political Economy, Vol. 105, pp. 473− 521.

Lancaster, Tony (1997) “Exact Structural Inference in Optimal Job Search Models.” Journal of
Business and Economic Statistics, Vol. 15 (2), pp. 165− 179.

McCullogh, Robert, and Peter Rossi (1994) “An Exact Likelihood Analysis of the Multino-
mial Probit Model.” Journal of Econometrics, Vol. 64 (1), pp. 207− 240.

34

Pakes, Ariel and Paul McGuire (2001) “Stochastic Algorithms, Symmetric Markov Perfect
Equilibrium, and the ‘Curse’ of Dimensionality.”, forthcoming Econometrica

Roberts, Mark and James Tybout (1997)“The Decision to Export in Columbia: An Empirical
Model of Entry with Sunk Costs.” American Economic Review.

Rosenthal, Jeffrey, S. (1995)“Minorization Conditions and Convergence Rates for Markov Chain
Monte Carlo”, JASA, Vol. 90, No. 430, pp. 558− 566

Rust, John (1997) “Using Randomization to Break the Curse of Dimensionality.” Econometrica,
Vol. 55, No. 5, pp. 999− 1033

Tanner, Martin A. and Wing H. Wong (1987) “The Calculation of Posterior Distributions by
Data Augmentation.” Journal of the American Statistical Association, vol. 82, pp. 528−549.

Tierney, Luke (1994)“Markov Chains for Exploring Posterior Distributions”, The Annals of Sta-
tistics, Vol. 22, No. 4, pp. 1701− 176

6.0.1 Appendix

Appendix 1: Proof of Theorem 1.
What we need to show is that for any s ∈ S, �, θ ∈ Θ,

V (t)
³
s, �, θ,Ω(t)

´
P→ V (s, �, θ) as t→∞

But since
V (t)(s, �, θ) = max

a∈A
V(t)(s, a, �, θ,Ω(t)), V (s, �, θ) = max

a∈A
V(s, a, �, θ),

it suffices to show that for any s ∈ S, a ∈ A, �, θ ∈ Θ,

V(t)
³
s, a, �, θ, ,Ω(t)

´
P→ V (s, a, �, θ) as t→∞.

Define

WN(t),h(θ, θ
(t−n),Ω(t)) ≡ Kh(θ − θ(t−n))PN(t)

k=1 Kh(θ − θ(t−k))

Then, the difference between the true value function of action a and that obtained by the Bayesian
Dynamic Programming iteration can be decomposed into 3 parts as follows.

V (s, a, �, θ)− V(t)
³
s, a, �, θ,Ω(t)

´

= β

Z V (s0, �0, θ)dF�0(�0, θ)−
N(t)X
n=1

V (t−n)(s0, �(t−n), θ(t−n))WN(t),h(θ, θ
(t−n),Ω(t))


35

= β

Z V (s0, �0, θ)dF�0(�0, θ)−
N(t)X
n=1

V (s0, �(t−n), θ)WN(t),h(θ, θ
(t−n),Ω(t))


+β

N(t)X
n=1

h
V (s0, �(t−n), θ)− V (s0, �(t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n),Ω(t))


+β

N(t)X
n=1

h
V (s0, �(t−n), θ(t−n))− V (t−n)(s0, �(t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n),Ω(t))


≡ A1 +A2 +A3

Notice that the kernel smoothing part is difficult to handle because the underlying distribution
of θ(s) has a conditional density function f (s)(θ(s−1), θ(s)) (conditional on θ(s−1)), which is a com-
plicated nonlinear function of all the past value functions and the parameters. Therefore, instead
of deriving the asymptotic value of 1

N(t)

PN(t)
k=1 Kh(θ−θ(t−k)), as is done in standard nonparametric

kernel asymptotics, we derive and use its asymptotic lower bound. Lemma 1 below is used for the
derivation of the asymptotic lower bound. The lemma shows that the transition density of the
parameter process has an important property: regardless of the current location of the parameter
or the number of steps, every parameter value is visited with a positive probability.

Lemma 1 : There exists a density function g(θ), g(θ) > 0 for any θ ∈ Θ and ε0 such that
0 < ε0 ≤ 1 such that for any t, f (t) (θ, .) ≥ ε0g (.) .

Proof. Recall that

p(t)
³
θ
(t+1)
j |θ(t,−j)

´
≡ π(θ(t,−j), θ(t+1)j)L(YT |b², θ(t,−j), θ(t+1)j , V (t))R

π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj , V (t))dθj
By assumptions 1 (Compactness of parameter space), 5 (Strict Positivity and Boundedness of π
and L), and 6 (Compactness of support of �), there exist η1, η2,M1,M2 > 0, such that,

η1 < π(θ)L(YT |b², θ, V) < M1, and

η2 <
R
π(θ(t,−j), θj)L(YT |b², θ(t,−j), θj , V)dθj < M2.

Therefore, for any θj ,

infb�,θ(t,−j) p(t)
³
θt+1j |θ(t,−j)

´
exists and is positive. Let

h (θj) ≡ infb�,θ(t,−j) p(t)
³
θj |θ(t,−j)

´

36

Now, define

g (θ) ≡
JQ

j=1

h (θj)R
h (θj) dθj

, ε0 =
JQ
j=1

R
h (θj) dθj .

Notice that g(θ) is positive and bounded and
R
g (θ) dθ = 1 by construction. Hence g(θ) is a density

function. By construction, ε0 is a positive constant. Furthermore,

ε0g (θ) =
JQ

j=1
h (θj) ≤

JQ
j=1

p(t)
³
θj |θ(t,−j)

´
= f (t)

³
θ(t−1), θ

´
.

Finally, since both g() and f (t)
³
θ(t−1), .

´
are densities and integrate to 1, ε0 ≤ 1.

Lemma 2 There exists a density function eg(), eg(θ) > 0 for any θ ∈ Θ and ε1 > 0 such that for
any t, ε1eg (.) ≥ f (t) (θ, .) .

Proof. Using similar logic as in Lemma 1, one can show that for any θj ,

supb�,θ(t,−j) p
³
θt+1j |θ(t,−j)

´
exists and is bounded. Let eh (θj) ≡ supb�,θ(−j) p

(t)
³
θt+1j |θ(t,−j)

´
Now, let

eg (θ) ≡ JQ
j=1

eh (θj)R eh (θj) dθj , ε1 =
JQ
j=1

R eh (θj) dθj .
Then, eg (θ) and ε1 satisfy the conditions of the Lemma.

Lemma 3 A1
P→ 0 as t→∞

Proof. Recall that,

A1
β
=

Z
V (s0, �0, θ)dF�0(�0, θ)−

N(t)X
n=1

V (s0, �(t−n), θ)WN(t),h(θ, θ
(t−n),Ω(t)).

Rewrite it as,

A1
β
=

1
N(t)

PN(t)
n=1

µZ
V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)

¶
Kh(θ − θ(t−n))

1
N(t)

PN(t)
k=1 Kh(θ − θ(t−k))

.

We show that the numerator goes to zero as t→∞ and the denominator is bounded below by
a positive number.

37

Let

XN(t)n =
1

N(t)

·Z
V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)

¸
Kh(θ − θ(t−n)),

where n = 1, ..., N(t). Then, because �(t−n)’s are i.i.d.,

E
£
XN(t)n

¤
= 0, E

£
XN(t)nXN(t)m

¤
= 0 for n 6= m.

Also, using the standard definition of the kernel function, we obtain,

¯̄
XN(t)n

¯̄ ≤ 1

N(t)

¯̄̄̄Z
V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)

¯̄̄̄ ·
sup |K|
h(N(t))

¸
Now, let

CN(t)n =
1

N(t)h (N(t))
,

where h(N(t)) is assumed to satisfy N(t)h (N(t))2 →∞ as N(t)→∞. Then,¯̄̄̄
XN(t)n

CN(t)n

¯̄̄̄
≤
¯̄̄̄Z

V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)
¯̄̄̄
sup |K|

Because V (s0, �(t−n), θ) is L2-bounded and sup |K| is bounded, XN(t)n

CN(t)n
is also uniformly L2-bounded,

and thus, uniformly integrable. Furthermore,

lim
N(t)→∞

N(t)P
n=1

C2N(t)n = lim
N(t)→∞

1

N(t)h (N(t))2
= 0

Therefore, the assumptions for the Corollary 19.10 of Davidson (1994) are satisfied. Hence,

N(t)P
n=1

XN(t)n
L2→ 0

Therefore,

N(t)P
n=1

XN(t)n =
1

N(t)

N(t)P
n=1

·Z
V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)

¸
Kh(θ − θ(t−n)) P→ 0 (A1)

as N(t) → ∞. This shows that the numerator in A1
β goes to zero. We next show that the

denominator is bounded below by using an argument similar to coupling theory (see Rosenthal,
1995) and the law of large numbers.

Let

R(t−n) ≡ ε0
g
³
θ(t−n)

´
f (t−n)

³
θ(t−n−1), θ(t−n)

´ . (A2)

38

Then, from Lemma 1, 0 ≤ R(t−n) ≤ 1, 0 ≤ ε0 ≤ 1 holds. Also, define a random variable Y (t−n) as
follows.

Y (t−n) = Kh

³
θ − θ(t−n)(f (t−n))

´
with probability R(t−n)

Y (t−n) = 0 with probability 1−R(t−n) (A3)

where θ(t−n)(f (t−n)) means that θ(t−n) has density f (t−n)
³
θ(t−n−1), θ(t−n)

´
conditional on θ(t−n−1).

Then, Y (t−n) is a mixture of 0 and Kh

³
θ − θ(t−n)(g)

´
, with the mixing probability being 1 − ε0

and ε0. That is,

Y (t−n) = Kh

³
θ − θ(t−n)(g)

´
with probability ε0

Y (t−n) = 0 with probability 1− ε0 (A4)

Furthermore, from the construction of Y (t−n),

Y (t−n) ≤ Kh

³
θ − θ(t−n)(f (t−n))

´
Now, because θ(t−n)(g), n = 1, ..., N(t) are i.i.d., the standard results on Kernel smoothing holds (
see Haerdle (1989)) and

1

N(t)

N(t)P
n=1

Y (t−n) P→ ε0g(θ).

Hence, the Law of Large Numbers holds. Therefore, for any η1 > 0, η2 > 0, there exists N > 0
such that for any N(t) > N , t > N(t)

Pr

"¯̄̄̄
¯ 1

N(t)

N(t)P
n=1

Y (t−n) − ε0g (θ)

¯̄̄̄
¯ < η1

#
> 1− η2

That is, for any η1 > 0, η2 > 0, there exists N > 0 such that for any N(t) > N , t > N(t),

Pr

"
1

N(t)

N(t)P
n=1

Y (t−n) + η1 > ε0g (θ)

#
> 1− η2 (A5)

Choose η1 <
1
2�0g(θ).Then,

Pr

"
1

N(t)

N(t)P
n=1

Y (t−n) >
1

2
ε0g(θ)

#
> 1− η2.

Because
NP
n=1

Kh

³
θ − θ(t−n)(f (t−n))

´
>

NP
n=1

Y (t−n), we conclude that for any η2 > 0, there exists N

such that for any N(t) > N , t > N(t)

Pr

"
1

N(t)

N(t)P
n=1

Kh

³
θ − θ(t−n)(f (t−n))

´
>
1

2
ε0g(θ)

#
> 1− η2. (A6)

39

From A1 and A6, we can see that for any η1 > 0, η2 > 0, there exists N such that for any N(t) > N ,
t > N(t),

Pr


1

N(t)

N(t)P
n=1

·Z
V (s0, �0, θ)dF�0(�0, θ)− V (s0, �(t−n), θ)

¸
Kh(θ − θ(t−n))

1
N(t)

N(t)P
n=1

Kh

³
θ − θ(t−n)(f (t−n))

´ <
η1

1
2ε0g(θ)

 > 1− η2.

Since η1
1
2
ε0g(θ)

can be made arbitrarily small by choosing η1 > 0 small enough, we have shown that

A1
P→ 0 as N(t)→∞

Lemma 4
A2

P→ 0 as N(t)→∞

Proof.¯̄̄̄
A2
β

¯̄̄̄
≤

N(t)P
n=1

¯̄̄
V
³
s0, �(t−n), θ

´
− V

³
s0, �(t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n),Ω(t)

´
≤

N(t)P
n=1

¯̄̄
V
³
s0, �(t−n), θ

´
− V

³
s0, �(t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
+

N(t)P
n=1

¯̄̄
V
³
s0, �(t−n), θ

´
− V

³
s0, �(t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
≡ H1 +H2 (A7)

where δ > 0 is arbitrarily set.

Step 1 of Lemma 4: Show that H2
P→ 0.

Note that

H2 ≤ 2K
N(t)P
n=1

WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
(A8)

where K = sups,�,θ |V (s, �, θ)|. Then,

RHS of (A8) = 2K

1
N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
1

N(t)

PN(t)
k=1 Kh(θ − θ(t−k))

. (A9)

40

Note that Kh(N(t))(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
≥ 0. Hence, from Chebychev Inequality, for any

η > 0,

Pr

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
≥ η

#

≤ 1

η
E

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´#
(A10)

From Lemma 2, there exists ε1 > 0 such that for any s, θ(s−1), θ ∈ Θ

ε1eg(θ) ≥ f (s)
³
θ(s−1), θ

´
.

Hence,

E

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n)(f (t−n)))I
³¯̄̄
θ − θ(t−n)(f (t−n))

¯̄̄
> δ

´#
(1)

≤ ε1E

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n) (eg))I ³¯̄̄θ − θ(t−n) (eg)¯̄̄ > δ
´#

.

Since θ(t−n) (eg), n = 1, 2.., N(t), are i.i.d., we have,
E

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n)(f (t−n)))I
³¯̄̄
θ − θ(t−n)(f (t−n))

¯̄̄
> δ

´#

≤ ε1E

"
1

h (N(t))
K(

θ − θ(t−n) (eg)
h

)I
³¯̄̄
θ − θ(t−n) (eg)¯̄̄ > δ

´#

= ε1

Z
|θ−eθ|>δ

1

h
K

Ã
θ − eθ
h

!
g
³eθ´ deθ (A11)

Now, by change of variables,Z
|θ−eθ|>δ

1

h
K

Ã
θ − eθ
h

!
g
³eθ´ deθ =

Z
|a|> δ

h

K (a) g (θ − ah) da

≤ sup
θ∈Θ

g (θ)

Z
|a|> δ

h

K (a) da (A12)

Because
R
K (a) da = 1 and

R
aK (a) da is bounded by assumption,

R
|a|> δ

h
K (a) da→ 0 as h→ 0.

Therefore, RHS of A12→ 0 as h→ 0 and thus,

Pr

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
≥ η

#
→ 0

41

as h (N(t))→ 0.
Now, consider the denominator of (A9). Using (A6) from Lemma 3, for t > T ,

Pr

2K
N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
PN(t)

k=1 Kh(θ − θ(t−k))
<

2Kη
1
2ε0g (θ)


> Pr{

"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n)(f (t−n))) >
1

2
ε0g (θ)

#
T" 1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
< η

#
}

≥ 1− Pr
"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n)(f (t−n))) ≤ 1
2
ε0g (θ)

#

−Pr
"
1

N(t)

N(t)P
n=1

Kh(θ − θ(t−n))I
³¯̄̄
θ − θ(t−n)

¯̄̄
> δ

´
≥ η

#
> 1− η2 −

ε1
η
E
h
Kh(θ − θ(t−n) (g))I

³¯̄̄
θ − θ(t−n) (g)

¯̄̄
> δ

´i
.

Notice that g(θ) > 0. Hence, 2KNAη
1
2
ε0g(θ)

can be made arbitrarily small by choosing η > 0 small enough.

Given η > 0, ε1η E
h
Kh(θ − θ(t−n) (g))I

³¯̄̄
θ − θ(t−n) (g)

¯̄̄
> δ

´i
can also be made arbitrarily small by

choosing h to be small enough.

Thus, we have shown that H2
P→ 0 as t→∞, h→ 0.

Step 2 of Lemma 4: Show that H1
P→ 0.

Define L = sups∈S,�,θ∈Θ
¯̄̄
∂V (s,�,θ)

∂θ

¯̄̄
. Then, from the Intermediate Value Theorem,

N(t)P
n=1

¯̄̄
V
³
s0, �(t−n), θ

´
− V

³
s0, �(t−n), θ(t−n)

´¯̄̄
WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤

N(t)P
n=1

L
¯̄̄
θ − θ(t−n)

¯̄̄
WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤ Lδ

N(t)P
n=1

WN(t),h

³
θ, θ(t−n),Ω(t)

´
I
³¯̄̄
θ − θ(t−n)

¯̄̄
≤ δ

´
≤ Lδ

N(t)P
n=1

WN(t),h

³
θ, θ(t−n),Ω(t)

´
= Lδ

which can be made arbitrarily small by choosing small enough δ > 0.

Together, we showed that A2
P→ 0 as h→ 0

Now, we return to the proof of Theorem 1. That is, we show that

V (s, a, �, θ)− V(t)
³
s, a, �, θ,Ω(t)

´
P→ 0 as t→∞

42

Define A(t) to be as follows:
A(t)(θ) ≡ A1 +A2

From Lemma 3 and Lemma 4, we conclude that

V (s, a, �, θ)− V(t)
³
s, a, �, θ,Ω(t)

´
= A(t)(θ)

+β

N(t)X
n=1

h
V (s0, �(t−n), θ(t−n))− V (t−n)(s0, �(t−n), θ(t−n),Ω(t))

i
WN(t),h(θ, θ

(t−n),Ω(t))

 (A15)

where
A(t)(θ) = A1 +A2

P→ 0.

Because this holds for any θ ∈ Θ and Θ is compact, convergence is uniform. Because A(t)
³
θ(t)
´
≤

supθ∈ΘA(t)(θ),

A(t)(θ(t))
P→ 0

Taking supremum over a and then taking absolute values on both sides of equality A15, we obtain:¯̄̄
V (s, �, θ)− V (t)

³
s, �, θ,Ω(t)

´¯̄̄
≤

¯̄̄
supA(t) (θ)

¯̄̄
+ β

N(t)X
n=1

¯̄̄
V (s0, �(t−n), θ(t−n))− V (t−n)(s0, �(t−n), θ(t−n),Ω(t))

¯̄̄
WN(t),h(θ, θ

(t−n),Ω(t))

(A15’)

Lemma:
For t0 > t, let

fW ¡
t0, t
¢ ≡ βWN(t0),h(θ

(t0), θ(t),Ω(t))

Furthermore, let τ < t and let

Ψm (t+N, t, τ) ≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+N > tm−1 > > t2 > t1 ≥ t0 = τ}

for l,m,N ≥ 1. Define

cW (t+N, t, τ , l) ≡
N+1X
m=l

 X
Ψm(t+N,t,τ)

mQ
k=1

fW (tk, tk−1)



43

Then, for any N ,¯̄̄
V (s, �, θ)− V (t+N)

³
s, �, θ,Ω(t+N)

´¯̄̄
≤

¯̄̄̄
sup
a∈A

A(t+N)
³
θ(t+N)

´¯̄̄̄

+

N−1X
m=0

cW (t+N, t+N −m, t+N −m− 1, 1) sup
a∈A

¯̄̄
A(t+N−m−1)

³
θ(t+N−m−1)

´¯̄̄

+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, �(t−n), θ(t−n))− V (t−n)(bs, �(t−n), θ(t−n),Ω(t))¯̄̄ cW (t+N, t, t− n, 1).(A16)

Furthermore,
N(t)X
n=1

cW (t+N, t, t− n, l) ≤ βl

Proof of Lemma.
For iteration t+ 1, we get¯̄̄

V
³
s, �, θ(t+1)

´
− V (t+1)

³
s, �, θ(t+1),Ω(t+1)

´¯̄̄
≤

¯̄̄
supA(t+1)

³
θ(t+1)

´¯̄̄
+

N(t+1)X
n=1

¯̄̄
V (s0, �(t+1−n), θ(t+1−n))− V (t+1−n)(s0, �(t+1−n), θ(t+1−n),Ω(t+1−n))

¯̄̄
fW (t+ 1, t+ 1− n)

≤
¯̄̄
supA(t+1)

³
θ(t+1)

´¯̄̄
+
¯̄̄
V (s0, �(t), θ(t))− V (t)(s0, �(t), θ(t),Ω(t))

¯̄̄ fW (t+ 1, t)

+

N(t+1)−1X
n=1

¯̄̄
V (s0, �(t−n), θ(t−n))− V (t−n)(s0, �(t−n), θ(t−n),Ω(t−n))

¯̄̄ fW (t+ 1, t− n)

Now, we substitute away
¯̄̄
V (s0, �(t), θ(t))− V (t)(s0, �(t), θ(t),Ω(t))

¯̄̄
by using A150) and the fact that

N(t) ≥ N(t+ 1)− 1,
¯̄̄
V
³
s, �, θ(t+1)

´
− V (t+1)

³
s, �, θ(t+1),Ω(t+1)

´¯̄̄
≤

¯̄̄
supA(t+1)(θ(t+1))

¯̄̄
+ sup

a∈A

¯̄̄
A(t)(θ(t))

¯̄̄ fW (t+ 1, t)

+
N(t)P
n=1

supbs∈S
¯̄̄
V (bs, �(t−n), θ(t−n))− V (t−n)(bs, �(t−n), θ(t−n),Ω(t−n))¯̄̄

{fW (t+ 1, t)fW (t, t− n) +fW (t+ 1, t− n)}

44

Notice that

cW (t+ 1, t, t− n) =
2X

m=1

 X
Ψm(t−n,t,t+1)

mQ
k=1

fW (tk, tk−1)


= fW (t+ 1, t− n) +fW (t+ 1, t)fW (t, t− n)

Hence, ¯̄̄
V
³
s, �, θ(t+1)

´
− V (t+1)

³
s, �, θ(t+1),Ω(t+1)

´¯̄̄
≤

¯̄̄
supA(t+1)

³
θ(t+1)

´¯̄̄
+ sup

a∈A

¯̄̄
A(t)

³
θ(t)
´¯̄̄cW (t+ 1, t+ 1, t, 1)

+
N(t)P
n=1

supbs∈S
¯̄̄
V (bs, �(t−n), θ(t−n))− V (t−n)(bs, �(t−n), θ(t−n),Ω(t−n))¯̄̄ cW (t+ 1, t, t− n, 1)

and, inequality A16 holds for N = 1

Furthermore, because
N(t)P
n=1

fW (t, t− n)/β =
N(t)P
n=1

WN(t),h(θ
(t), θ(t−n),Ω(t)) = 1,

N(t)P
n=1

cW (t+ 1, t, t− n, 1)

=
N(t)P
n=1

fW (t+ 1, t)fW (t, t− n) +
N(t)P
n=1

fW (t+ 1, t− n)

= fW (t+ 1, t)
N(t)P
n=1

fW (t, t− n) +
N(t)P
n=1

fW (t+ 1, t− n)

= βfW (t+ 1, t) +
N(t)P
n=1

fW (t+ 1, t− n)

≤
N(t)+1P
n=1

fW (t+ 1, t+ 1− n)

Since fW (t+ 1, t+ 1− n) = 0 for any n > N(t+ 1),

N(t)+1P
n=1

fW (t+ 1, t+ 1− n) =
N(t+1)P
n=1

fW (t+ 1, t+ 1− n)

= β
N(t+1)P
n=1

WN(t+1),h(θ
(t+1), θ(t+1−n),Ω(t+1)) = β.

Thus,
N(t)P
n=1

cW (t+ 1, t, t− n, 1) ≤ β. (A17)

45

Next, suppose that inequality A16 holds for N= M . Then, using t + 1 instead of t in inequality
A16 yields,

¯̄̄
V
³
s, �, θ(t+1+M)

´
− V (t+1+M)

³
s, �, θ(t+1+M),Ω(t+1+M)

´¯̄̄
≤

¯̄̄
supA(t+M+1)

³
θ(t+M+1)

´¯̄̄
+

M−1X
m=0

cW (t+M + 1, t+M + 1−m, t+M −m, 1) sup
a∈A

¯̄̄
A(t+M−m)

³
θ(t+M−m)

´¯̄̄

+

N(t)X
n=1

supbs∈S
¯̄̄
V (bs, �(t−n), θ(t−n))− V (t−n)(bs, �(t−n), θ(t−n),Ω(t−n))¯̄̄hcW (t+M + 1, t+ 1, t, 1)fW (t, t− n) +cW (t+M + 1, t+ 1, t− n, 1)

i
(A18)

Now, we claim that,

cW (t+M, t+ 1, t, 1)fW (t, t− n) +cW (t+M, t+ 1, t− n, 1)

= cW (t+M, t, t− n, 1) (A19)

Proof of the Claim:
LetΨm,1(t+M, t, τ) ≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > > t2 ≥ t+ 1, t = t1, t0 = τ},

Ψm,2(t+M, t, τ) ≡ {Jm = (tm, tm−1, ..., t1, t0) : tm = t+M > tm−1 > > t2 > t1 ≥ t+ 1, t0 = τ}.
Then,

Ψm(t+M, t, τ) = Ψm,1(t+M, t, τ) ∪Ψm,2(t+M, t, τ)

and
Ψm,1(t+M, t, τ) ∩Ψm,2(t+M, t, τ) = ∅

Notice that
Ψm,1(t+M, t, τ) = Ψ1 (t, t, τ) ∪Ψm−1 (t+M, t+ 1, t)

for m > 1 and

Ψ1,1(t+M, t, τ) = {J1 = (t1, t0) : t0 = τ , t = t1 = t+M} = ∅
and

Ψm,2(t+M, t, τ) = Ψm(t+M, t+ 1, τ)

if m ≤M and because,

ΨM+1(t+M, t+ 1, τ)

= {Jm = (tm, tm−1, ..., t1, t0) : tM+1 = t+M > tm−1 > > t2 > t1 ≥ t+ 1, t0 = τ} = ∅,
ΨM+1,2(t+M, t, τ) = ∅

46

Hence,

cW (t+M, t, τ , 1)

≡
M+1X
m=1

 X
Ψm(τ,t,t+M)

mQ
k=1

fW (tk, tk−1)


=

M+1X
m=1

 X
Ψm1(τ,t,t+M)

mQ
k=1

fW (tk, tk−1)

+
M+1X
m=1

 X
Ψm2(τ,t,t+M)

mQ
k=1

fW (tk, tk−1)


=

M+1X
m=1

 X
Ψm−1(t,t+1,t+M)

m−1Q
k=1

fW (tk, tk−1)

fW (t, τ) +
MX
m=1

 X
Ψm(τ,t+1,t+M)

mQ
k=1

fW (tk, tk−1)


=

MX
m=1

 X
Ψm(t,t+1,t+M)

mQ
k=1

fW (tk, tk−1)

fW (t, τ) +
MX

m=1

 X
Ψm(τ,t+1,t+M)

mQ
k=1

fW (tk, tk−1)


By definition,

MX
m=1

 X
Ψm(t,t+1,t+M)

mQ
k=1

fW (tk, tk−1)

 = cW (t+M, t+ 1, t, 1)

and
MX

m=1

 X
Ψm(τ,t+1,t+M)

mQ
k=1

fW (tk, tk−1)

 = cW (t+M, t+ 1, τ , 1)

Therefore,

cW (t+M, t, τ , 1) = cW (t+M, t+ 1, t, 1)fW (t, τ) +cW (t+M, t+ 1, τ , 1)

and the claim holds. Similar results hold when we substitute M + 1 for M , i.e.

cW (t+M + 1, t, τ , l) = cW (t+M + 1, t+ 1, t, l − 1)fW (t, τ) +cW (t+M + 1, t+ 1, τ , l)

Substituting this into equation A18 yields the first part of the lemma. For the second part, note
that, for l = 1, and for any M > 0,

N(t)P
n=1

cW (t+M, t, t− n, 1) ≤ β

Suppose for some l > 0,
N(t)P
n=1

cW (t+M, t, t− n, l) ≤ βl

holds for any M > 0. Then, for l0 = l + 1, by definition of cW,

47

N(t)P
n=1

cW (t+M, t, t− n, l + 1) =
N(t)P
n=1

M−1P
m=l−1

fW (t+M, t+m)cW (t+m, t, t− n, l)

=
M−1P
m=l−1

fW (t+M, t+m)
N(t)P
n=1

cW (t+m, t, t− n, l)

≤
M−1P
m=l−1

fW (t+M, t+m)βl

≤ βl+1

Therefore, from induction, the Lemma holds.
Now, define the sequence t(l), eN(l) as follows. For some t > 0, define t(1) = t, and eN(1) = N(t).

Let t(2) be such that t(2) − N(t(2)) = t(1) + 1. Such t(2) exists because from assumption, N(t)
is nondecreasing in t and t − N(t) → ∞. Also, let eN(2) = N(t(2)). Similarly, for any l > 2, let
t(l+1) be such that t(l+1)−N(t(l+1)) = t(l) + 1, and let eN(l+1) = N(t(l+1)). Furthermore,
assume that there exists a finite constant A > 0 such that eN(l + 1) < AN(l). Then,

eN(l+1)P
m=1

¯̄̄
V
³
s, �(t(l)+m), θ(t(l)+m)

´
− V (t(l)+m)

³
s, �(t(l)+m), θ(t(l)+m),Ω(t(l)+m)

´¯̄̄fW (t(l + 1), t(l) +m)

≤
eN(l+1)P
m=1

{
¯̄̄̄
sup
a∈A

A(t(l)+m)
³
θ(t(l)+m)

´¯̄̄̄
+

m−1P
i=0

cW (t(l) +m, t(l) +m− i, t(l) +m− i− 1, 1) sup
a∈A

¯̄̄
A(t(l)+m−i−1)

¯̄̄
}fW (t(l + 1), t(l) +m)

+
eN(l+1)P
m=1

eN(l)P
n=1

supbs∈S
¯̄̄
V (bs, �(t(l)−n), θ(t(l)−n))− V (t(l)−n)(bs, �(t(l)−n), θ(t(l)−n),Ω(t(l)−n))¯̄̄

cW (t(l) +m, t(l), t(l)− n, 1)fW (t(l + 1), t(l) +m) (A20)

Now, from the definition of cW (t(l + 1), t(l), t(l)− n, l), (the use of l in two ways!)

cW (t(l + 1), t(l), t(l)− n, l + 1) =
eN(l+1)P
m=l−1

fW (t(l + 1), t(l) +m)cW (t(l) +m, t(l), t(l)− n, l)

In the sum, m starts from l − 1, not 1.

48

Hence,

RHS of A20 ≤
eN(l+1)P
m=1

¯̄̄̄
sup
a∈A

A(t(l)+m)(θ(t(l)+m))

¯̄̄̄ fW (t(l + 1), t(l) +m)

+
eN(l+1)P
i=1

½cW (t(l + 1), t(l) + i, t(l) + i− 1, 2) sup
a∈A

¯̄̄
A(t(l)+i−1)

³
θ(t(l)+i−1)

´¯̄̄¾
+

eN(l)P
n=1

supbs∈S
¯̄̄
V (bs, �(t(l)−n), θ(t(l)−n))− V (t(l)−n)(bs, �(t(l)−n), θ(t(l)−n),Ω(t(l)−n))¯̄̄

cW (t(l + 1), t(l), t(l)− n, 2) (A21)

Now, let

A(l) =
eN(l+1)P
m=1

¯̄̄̄
sup
a∈A

A(t(l)+m)(θ(t(l)+m))

¯̄̄̄ fW (t(l + 1), t(l + 1)−m)

+
eN(l+1)P
i=1

½cW (t(l + 1), t(l) + i, t(l) + i− 1, 2) sup
a∈A

¯̄̄
A(t(l)+i−1)

³
θ(t(l)+i−1)

´¯̄̄¾

Recall that

A(t) = β

Z V (s0, �0, θ)dF�0(�0, θ)−
N(t)X
n=1

V (s0, �(t−n), θ)WN(t),h(θ, θ
(t−n),Ω(t))


+β

N(t)X
n=1

h
V (s0, �(t−n), θ)− V (s0, �(t−n), θ(t−n))

i
WN(t),h(θ, θ

(t−n),Ω(t))


Because

Z
V (s0, �0, θ)dF�0(�0, θ), and V (s0, �(t−n), θ) are bounded and the parameter space is

compact, A(t) is uniformly bounded. Hence, assume that there exists A > 0 such that A(t) ≤ A for

any t. Because A(t) P→ 0 for any η1 > 0, η2 > 0, there exists T such that for any t > T ,

Pr

·
sup
a∈A

¯̄̄
A(t)

¯̄̄
< η1

¸
> 1− η2

Therefore,

E

·
sup
a∈A

¯̄̄
A(t)

¯̄̄¸
≤ η1 Pr

·
sup
a∈A

¯̄̄
A(t)

¯̄̄
< η1

¸
+APr

·
sup
a∈A

¯̄̄
A(t)

¯̄̄
≥ η1

¸
≤ η1 (1− η2) +Aη2 (A22)

Next, we show that

A(l)
P→ 0 as l→∞

49

Proof : Let
A(l) = B1 +B2

where

B1 ≡
eN(l+1)P
m=1

¯̄̄̄
sup
a∈A

A(t(l)+m)
³
θ(t(l)+m)

´¯̄̄̄ fW (t(l + 1), t(l) +m)

and

B2 ≡
eN(l+1)P
i=1

cW (t(l + 1), t(l) + i, t(l) + i− 1, 2) sup
a∈A

¯̄̄
A(t(l)+i−1)

³
θ(t(l)+i−1)

´¯̄̄
Claim 1:

B1
P→ 0

Proof : For any t0 > t > 0, denote

eK ¡
t0, t
¢ ≡ Kh

³
θ(t

0) − θ(t)
´

First, we focus on the numerator part divided by eN(l + 1). That is, consider,
1eN(l + 1)

eN(l+1)P
m=1

eK (t(l + 1), t(l) +m)

¯̄̄̄
sup
a∈A

A(t(l)+m)
³
θ(t(l)+m)

´¯̄̄̄
Notice that,

1eN(l + 1)
eN(l+1)P
m=1

eK (t(l + 1), t(l) +m)

¯̄̄̄
sup
a∈A

A(t(l)+m)
³
θ(t(l)+m)

´¯̄̄̄

≤ 1eN(l + 1)
eN(l+1)P
m=1

eK (t(l + 1), t(l) +m)

¯̄̄̄
¯ sup
a∈A,θ∈Θ

A(t(l)+m) (θ)

¯̄̄̄
¯

Now, for any 0 < m < eN(l + 1), since A(t(l)+m) (θ) only depends on Ω(t(l)+m),
E

(eK(t(l + 1), t(l) +m) sup
a∈A,θ∈Θ

¯̄̄
A(t(l)+m) (θ)

¯̄̄)

= E

(
K(θ(t(l+1)), θ(t(l)+m))EΩ(t(l)+m)

"
sup

a∈A,θ∈Θ

¯̄̄
A(t(l)+m) (θ)

¯̄̄#)
(A23)

From A22, EΩ(t(l)+m)
£
supa∈A,θ∈Θ

¯̄
A(t(l)+m) (θ)

¯̄¤ ≤ £η1 (1− η2) + η2A
¤
. Hence,

RHS of A23 ≤ E
n
K(θ(t(l+1)), θ(t(l)+m))

£
η1 (1− η2) + η2A

¤o
Therefore,

50

(
1eN(l + 1)

eN(l+1)P
m=1

eK(t(l + 1), t(l) +m)

¯̄̄̄
sup
a∈A

A(t(l)+m)
³
θ(t(l)+m)

´¯̄̄̄)

≤ E

(
1eN(l + 1)

eN(l+1)P
m=1

eK(t(l + 1), t(l) +m)
£
η1 (1− η2) + η2A

¤)

≤ £
η1 (1− η2) + η2A

¤
E

(
1eN(l + 1)

eN(l+1)P
m=1

Kh(θ
(t(l+1)) − θ(t(l)+m))

)
(A24)

Notice that from Lemma 2, for any 0 < m < eN(l + 1),
f
³
θ(t(l+1)), θ(t(l+1)−1)

´
f
³
θ(t(l+1)−1), θ(t(l+1)−2)

´
...f

³
θ(t(l)+m+1), θ(t(l)+m)

´
f
³
θ(t(l)+m), θ(t(l)+m−1)

´
...f

³
θ(2)

≤ �21g(θ
(t(l+1)))f

³
θ(t(l+1)−1), θ(t(l+1)−2)

´
...f

³
θ(t(l)+m+1), θ(t(l)+m)

´
g(θ(t(l)+m))...f

³
θ(2), θ(1)

´
Hence,

E
h
Kh(θ

(t(l+1)) − θ(t(l)+m))
i
= E

h
Kh

³
θ(t(l+1))(f)− θ(t(l)+m)(f)

´i
≤ �21Eθ(t(l+1)),θ(t(l)+m)

h
Kh

³
θ(t(l+1))(g)− θ(t(l)+m)(g)

´i
≤ �21 sup

θ∈Θ
Eθ(t(l)+m)

h
Kh

³
θ − θ(t(l)+m)(g)

´i
and

RHS of A24 ≤ £
η1 (1− η2) + η2A

¤ 1eN(l + 1)
eN(l+1)P
m=1

E
n
Kh(θ

(t(l+1)) − θ(t(l)+m))
o

≤ £
η1 (1− η2) + η2A

¤
�21

1eN(l + 1)
eN(l+1)P
m=1

sup
θ∈Θ

E
n
Kh(θ, θ

(t(l)+m)(g))
o

=
£
η1 (1− η2) + η2A

¤
�21 sup

θ0∈Θ
E
©
Kh(θ

0, θ(g))
ª

(A25)

Now, for any δ > 0," eN(l+1)P
m=1

fW (t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
≤ δ

#

⊇
"

1eN(l + 1)
eN(l+1)P
m=1

eK(t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
≤ δ

1
2ε0 infθ g (θ)

#
∩"

1eN(l + 1)
N(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)(f (t(l+1)−k))) ≥ 1

2
ε0 inf

θ
g (θ)

#

51

Hence,

" eN(l+1)P
m=1

fW (t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
> δ

#

⊆
"

1eN(l + 1)
eN(l+1)P
m=1

eK(t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

δ
1
2ε0 infθ g (θ)

#
∩"

1eN(l + 1)
N(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)(f (t(l+1)−k))) <

1

2
ε0 inf

θ
g (θ)

#
and

Pr

" eN(l+1)P
m=1

fW (t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
> δ

#

≤ Pr

"
1eN(l + 1)

eN(l+1)P
m=1

eK(t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

δ
1
2ε0 infθ g (θ)

#
∪"

1eN(l + 1)
N(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)(f (t(l+1)−k))) <

1

2
ε0 inf

θ
g (θ)

#

≤ Pr

"
1eN(l + 1)

eN(l+1)P
m=1

eK(t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

δ
1
2ε0 infθ g (θ)

#

+Pr

"
1eN(l + 1)

N(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)(f (t(l+1)−k))) <

1

2
ε0 inf

θ
g (θ)

#
(A26)

Now, from Chebychev’s Inequality and A25,

Pr

"
1eN(l + 1)

eN(l+1)P
m=1

eK(t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

δ
1
2ε0 infθ g (θ)

#

≤
£
η1 (1− η2) + η2A

¤
�21 supθ0∈ΘE

©
Kh(θ

0, θ(g))
ª

δ/
£
1
2ε0 infθ g (θ)

¤ (A27)

Furthermore,

eN(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)) ≤ inf

θ∈Θ

eN(l+1)P
k=1

Kh(θ − θ(t(l+1)−k)(f (t(l+1)−k)))

and from A6, we know that for any η3 > 0, there exists L such that for any l > L,

Pr

"
1eN(l + 1)

eN(l+1)P
k=1

Kh(θ
t(l+1) − θ(t(l+1)−k)) <

1

2
ε0 inf

θ
g (θ)

#
< η3 (A28)

52

Now, given arbitrarily small η > 0, choose η1, η2, η3 such that£
η1 (1− η2) + η2A

¤
�21 supθ0∈ΘE

©
Kh(θ

0, θ(g))
ª

δ/
£
1
2ε0 infθ g (θ)

¤ + η3 < η (A29)

Let L1 such that L1 > L, t(L1) > T . Then, from A26 to A29,for any l > L1,

Pr

" eN(l+1)P
m=1

fW (t(l + 1), t(l) +m) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
> δ

#
< η

Hence, Claim 1 holds.
Claim 2:

B2 ≡
eN(l+1)P
i=1

cW (t(l + 1), t(l) + i, t(l) + i− 1, 2) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
P→ 0

Define W ∗ (t(l + 1)−m, t(l), t, k) recursively to be as follows.

W ∗ (t(l) +m, t(l), t, 1) = fW (t(l) +m, t)

W ∗ (t(l) +m, t(l), t, 2) =
m−1P
j=1

fW (t(l) +m, t(l) + j)W ∗ (t(l) + j, t(l), t, 1)

...

W ∗ (t(l) +m, t(l), t, k) =
m−1P
j=k−1

fW (t(l) +m, t(l) + j)W ∗ (t(l) + j, t(l), t, k − 1)

Similarly,

K∗ (t(l) +m, t(l), t, 1) =
1eN(l) eK(t(l) +m, t)

K∗ (t(l) +m, t(l), t, 2) =
m−1P
j=1

1eN(l) eK(t(l) +m, t(l) + j)K∗ (t(l) + j, t(l), t, 1)

...

K∗ (t(l) +m, t(l), t, k) =
m−1P
j=k−1

1eN(l) eK(t(l) +m, t(l) + j)K∗ (t(l) + j, t(l), t, k − 1)

Now, for given l,

cW (t(l + 1), t(l), τ , l1) ≡
eN(l+1)X
m=l1

 X
Ψm(t(l+1),t,τ)

mQ
k=1

fW (tk, tk−1)


=

eN(l+1)P
k=l1

W ∗(t(l + 1), t(l), τ , k) (A30)

53

Hence,

eN(l+1)P
i=1

½cW (t(l + 1), t(l) + i, t(l) + i− 1, l1) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄¾
=

eN(l+1)P
i=1

(eN(l+1)P
k=l1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄)

=
eN(l+1)P
k=l1

(eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄)
For any j > 0, and for any j ≥ k ≥ 1,

1eN(l + 1)k P
j1,...,jk+1

I(t(l) + i ≤ j1 < ... < jk+1 = t(l) + i+ j) =
1eN(l + 1)k

µ
j!

k!(j − k)!

¶
(A31)

≤
h
j/ eN(l + 1)ik

k!
≤ 1

k!
(2)

By induction, we can derive the following two equations.

E

(eN(l+1)P
i=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, k)
)

≤ Ak�k+11 sup
θ∈Θ

E [βKh (θ − θ(g))]k
1

k!
(A32)

Also,

E

(eN(l+1)P
i=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, k)|θ(t(l+1))
)

≤ Ak�k+11 sup
θ∈Θ

E [βKh (θ − θ(g))]k
1

k!
(A33)

As in Claim 1, we can show that, for k = 1,

E

(eN(l+1)P
i=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, 1)
)

≤ E

(eN(l + 1)eN(l) 1eN(l + 1)
eN(l+1)P
i=1

eK(t(l + 1), t(l) + i− 1)
)

≤ A�21E
£
βKh

¡
θ0(g)− θ(g)

¢¤ ≤ A�21 sup
θ0∈Θ

Eθ

£
βKh

¡
θ0 − θ(g)

¢¤
54

Also,

E

(eN(l+1)P
i=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, 1)|θ(t(l+1))
)

= E

(eN(l + 1)eN(l) 1eN(l + 1)
eN(l+1)P
i=1

eK(t(l + 1), t(l) + i− 1)|θ(t(l+1))
)

≤ A�21E
h
βKh

³
θ(t(l+1)) − θ(g)

´
|θ(t(l+1))

i
≤ A�21 sup

θ0∈Θ
Eθ

£
βKh

¡
θ0 − θ(g)

¢¤
Hence, A32 and A33 hold for k = 1. Now, suppose that A32 and A33 hold for k = M . Then, for
k =M + 1,

E

(eN(l+1)P
i=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1,M + 1)

)

≤ E

(
A

1eN(l + 1)
eN(l+1)P
i=1

eN(l+1)−iP
j=M

eK(t(l + 1), t(l) + i+ j)K∗ (t(l) + i+ j, t(l) + i, t(l) + i− 1,M)
)

≤ A
1eN(l + 1)

eN(l+1)P
i=1

eN(l+1)−iP
j=M

E
n eK(t(l + 1), t(l) + i+ j)E

h
K∗ (t(l) + i+ j, t(l) + i, t(l) + i− 1,M) |θ(t(l)+i+j)

io
≤ AeN(l + 1)�1E

"
βKh

¡
θ00(g)− θ0(g)

¢
AM�M+1

1 sup
θ0∈Θ

E
£
βKh

¡
θ0 − θ(g)

¢¤M#
1eN(l + 1)M+1

P
j1,...,jM+2

I(t(l) + i ≤ j1 < j2 < ... < jM+2 = t(l + 1))

≤ AM+1eN(l + 1)�M+2
1 sup

θ0∈Θ
E
£
βKh

¡
θ0 − θ(g)

¢¤M+1 1

(M + 1)!
.

Therefore, A32 holds for k =M + 1. The proof for A33 for k =M + 1 is similar to that for A32.
Also for any η3 > 0, there exists L such that for any l > L, t = t(l) and for t = t(l) + eN(l)/2,

Pr

"
1eN(l)/2

eN(l)/2P
n=1

Kh(θ − θ(t−k)(f (t−k))) ≥ 1
2
ε0g (θ)

#
> 1− η3

Now, notice that for any t(l) ≤ t ≤ t(l+1), either
h
t(l)− eN(l)/2, t(l)i ⊂ [t−N(t), t] or

h
t(l) + 1, t(l) + eN(l)/2i ⊂

[t−N(t), t] or both. Hence, for any t such that t(l) ≤ t ≤ t(l + 1)

1eN(l + 1)
N(t)P
n=1

Kh(θ − θ(t−k)(f (t−k))) ≥
eN(l)/2eN(l + 1) 1eN(l)/2

eN(l)/2P
k=1

Kh(θ − θ(s−k)(f (s−k)))

55

where either s = t(l) or s = t(l) + eN(l)/2. Furthermore, notice that eN(l)/2eN(l+1) ≥ 1
2ATherefore,

Pr

"
1eN(l + 1)

N(t)P
n=1

Kh(θ − θ(t−k)(f (t−k))) ≥ 1

4A
ε0g (θ)

#
> 1− η3 (A35)

Notice that

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) =
X

Ψk(τ,t(l),t(l+1))

kQ
j=1

fW (tj , tj−1)

=
X

Ψk(τ,t(l),t(l+1))

kQ
j=1

β
eK (tj , tj−1)
D (tj)

≤
·

inf
t(l)≤t≤t(l+1)

D(t)

¸−k X
Ψk(τ,t(l),t(l+1))

kQ
j=1

β eK (tj , tj−1)

=

"
1eN(l + 1) inf

t(l)≤t≤t(l+1)
D(t)

#−k X
Ψk(τ,t(l),t(l+1))

kQ
j=1

β
eK (tj , tj−1)eN(l + 1)

=

"
1eN(l + 1) inf

t(l)≤t≤t(l+1)
D(t)

#−k
K∗(t(l + 1), t(l) + i, t(l) + i− 1, k)

where

D (t) ≡
N(tj)P
i=1

eK (t, t− i)

Now, we get

Pr

" eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
> δk

#

≤ Pr

" eN(l+1)P
m=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

·
δ

4A
ε0 inf

θ
g (θ)

¸k#

+Pr

"
inf

t(l)≤t≤t(l+1)

"
1eN(l + 1)

N(t)P
i=1

eK(t, t− i)

#
<

1

4A
ε0 inf

θ
g (θ)

#
From Chebychev Inequality, we get

Pr

" eN(l+1)P
m=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
>

·
δ

4A
ε0 inf

θ
g (θ)

¸k#

≤
£
η1 (1− η2) + η2A

¤
Ak�k1 supθ∈ΘE [βKh (θ − θ(g))]k 1

k!£
δ 1
4Aε0 infθ g (θ)

¤k
56

Now, from A35, we get

Pr

"
inf

t(l)≤t≤t(l+1)

"
1eN(l + 1)

N(t)P
i=1

eK(t, t− i)

#
<

1

4A
ε0 inf

θ
g (θ)

#
≤ η3 (3)

Together, we establish that

Pr

 eN(l+1)X
k=l1

eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
>

δ − δ
eN(l+1)

1− δ


≤ Pr

" eN(l+1)S
k=l1

(eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
≥ δk

)#

≤
eN(l+1)X
k=l1

Pr

" eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
≥ δk

#

≤
eN(l+1)X
k=l1

Pr

" eN(l+1)P
m=1

K∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+m)

¯̄̄
≥
·
δ

4A
ε0 inf

θ
g (θ)

¸k#

+Pr

"
inf

t(l)≤t≤t(l+1)

"
1eN(l + 1)

N(t)P
i=1

eK(t, t− i)

#
<

1

4A
ε0 inf

θ
g (θ)

#

≤ £
η1 (1− η2) + η2A

¤
eλ

eN(l+1)X
k=l1

"
e−λ

λk

k!

#
+ η3

where

λ =
4A2�1 supθ∈ΘE [Kh (θ − θ(g))]

δε0 infθ g (θ)
> 0 (4)

Notice that e−λ λ
k

k! is the formula for the distribution function of the Poisson distribution. Hence,

eN(l+1)X
i=l1

e−λ
λk

k!
≤ 1

Together, we have shown that

Pr

 eN(l+1)X
k=l1

eN(l+1)P
i=1

W ∗(t(l + 1), t(l) + i, t(l) + i− 1, k) sup
a∈A

¯̄̄
A(t(l)+i−1)

¯̄̄
>

δ − δ
eN(l+1)

1− δ


≤ £

η1 (1− η2) + η2A
¤
exp (λ) + η3

RHS of the equation can be made arbitrarily small by choosing l, large enough. Hence B2
P→ 0.

57

Together, we have shown that

A(l)→ 0 as l→∞
Now, iterating it once again from A21, we obtain,

eN(l)P
m=1

¯̄̄
V
³
s, �(t(l−1)+m), θ(t(l−1)+m)

´
− V (t(l−1)+m)

³
s, �(t(l−1)+m), θ(t(l−1)+m),Ω(t(l−1)+m)

´¯̄̄
cW (t(l + 1), t(l), t(l − 1) +m, 2)

≤
eN(l)P
m=1

{
¯̄̄̄
sup
a∈A

A(t(l−1)+m)
¯̄̄̄

+
m−1P
i=0

cW (t(l − 1) +m, t(l − 1) +m− i, t(l − 1) +m− i− 1, 1) sup
a∈A

¯̄̄
A(t(l−1)+m−i−1)

¯̄̄
}

cW (t(l + 1), t(l), t(l − 1) +m, 2)

+
eN(l)P
m=1

eN(l−1)P
n=1

supbs∈S
¯̄̄
V (bs, �(t(l−1)−n), θ(t(l−1)−n))− V (t(l−1)−n)(bs, �(t(l−1)−n), θ(t(l−1)−n),Ω(t(l−1)−n))¯̄̄

cW (t(l − 1) +m, t(l − 1), t(l − 1)− n, 1)cW (t(l + 1), t(l), t(l − 1) +m, 2) (A36)

Notice that,

eN(l)P
m=1

cW (t(l + 1), t(l), t(l − 1) +m, 2)cW (t(l − 1) +m, t(l − 1), t(l − 1)− n, 1)

= cW (t(l + 1), t(l − 1), t(l − 1)− n, 3)

Hence,

RHS of A36

=
eN(l)P
m=1

cW (t(l + 1), t(l), t(l − 1) +m, 2)

¯̄̄̄
sup
a∈A

A(t(l−1)+m)
¯̄̄̄

+
eN(l)P
i=0

cW (t(l + 1), t(l − 1) + i, t(l − 1) + i− 1, 3) sup
a∈A

¯̄̄
A(t(l−1)+i−1)

¯̄̄
eN(l−1)P
n=1

supbs∈S
¯̄̄
V (bs, �(t(l−1)−n), θ(t(l−1)−n))− V (t(l−1)−n)(bs, �(t(l−1)−n), θ(t(l−1)−n),Ω(t(l−1)−n))¯̄̄

cW (t(l + 1), t(l − 1), t(l − 1)− n, 3)

Denote

∆V (m,n) ≡ sup
s∈S

¯̄̄
V (s, �(t(m)−n), θ(t(m)−n))− V (t(m)−n)(s, �(t(m)−n), θ(t(m)−n),Ω(t(m)−n))

¯̄̄
58

∆V (m) ≡
h
∆V (m, 1), ...,∆V (m, eN(m))i

W (l + 1, 1) ≡
hfW (t(l + 1), t(l + 1)−m)

i eN(l+1)
m=1

W (l + 1, k) ≡
hcW (t(l + 1), t(l + 2− k), t(l + 2− k)−m, k)

i eN(l+2−k)
m=1

Then, W (l + 1, k)0 ι ≤ βk and from A20,

∆V (l + 1)0W (l + 1, 1) ≤ A(l) +∆V (l)0W (l + 1, 2)

≤ ... ≤
kP
i=2

A (l − k + i) +∆V (l + 2− k)0W (l + 1, k)

The sum for A should start from i = 2. V should have l+2-k as an argument. The first term on the

RHS,
kP
i=0

A (l − k + i) converges to 0 in probability as l→∞ given k > 0, and since ∆V (l + 2− k)

is bounded and W (l + 1, k)0 ι ≤ βk, the second term can be made arbitrarily small by chosing large
enough k. Therefore, ∆V (l)0W (l, 1) converges to zero in probability as l→∞.

Now, from (4), we know that for t ≥ t(l)¯̄̄
V
³
s, a, �(t), θ

´
− V(t)

³
s, a, �(t), θ,Ω(t)

´¯̄̄
≤

¯̄̄
A(t)

¯̄̄
+∆V (l)0W (l, 1) (A37)

Since RHS converges to 0 in probability as l→∞,¯̄̄
V
³
s, a, �(t), θ

´
− V(t)

³
s, a, �(t), θ,Ω(t)

´¯̄̄
P→ 0

as t→∞.

Proof of Theorem 2
Suppose there is a Markov chain with the transition function f (t) (., .) which converges to f (., .)

in probability uniformly. Also, suppose that that there is a density g(.) and a constant ε > 0 such
that for any θ ∈ Θ,

f (t)(θ, .) ≥ εg(.)

f(θ, .) ≥ εg(.)

Also, define ν(t) as follows.

v(t) = min

(
inf
θ0

(
f (t)

¡
θ, θ0

¢
f
¡
θ, θ0

¢) , 1

)

59

Then,

f (t)(θ, .) ≥ v(t)f (θ, .)

f(θ, .) ≥ v(t)f (θ, .)

Now, assume the following coupling scheme. Let X(t) be a random variable, and Y (t) is the Markov
process tht follows the transition probability f(x, .). Suppose X(t) 6= Y (t).

With probability ε > 0, let

X(t+1) = Y (t+1) = Z(t+1)˜g(.)

with probability 1− ε,

X(t+1)˜
1

1− ε

h
f (t)

³
X(t), .

´
− εg(.)

i
Y (t+1)˜

1

1− ε

h
f (t)

³
Y (t), .

´
− εg(.)

i
Supose X(t) = Y (t) = Z(t). With probability v(t),

X(t+1) = Y (t+1)˜f(Z(t).)

with probaiblity 1− vk,

X(t+1)˜
1

1− v(t)

h
f (t)

³
X(t), .

´
− εg(.)

i
Y (t+1)˜

1

1− v(t)

h
f (t)

³
Y (t), .

´
− εg(.)

i
As f (t)(x, .) P→ f(x, .) uniformly over the compact parameter setΘ, v(t) converges to v in probability.

Let w(t) = 1 − v(t). Then, w(t) P→ 0. Let state 1 be the case when X(t) = Y (t), and let state 2
be the case when X(t) 6= Y (t). Then, the process

¡
X(t), Y (t)

¢
follows the Markov process with the

below transition matrix.

P =

·
1− w(t) w(t)

ε 1− ε

¸
Denote the unconditional probability of state 1 as π(t). Then,h

π(t+1), 1− π(t+1)
i
=
h
π(t), 1− π(t)

i ·
1−w(t) w(t)

ε 1− ε

¸
Hence,

π(t+1) = π(t)
³
1− w(t) − ε

´
+ ε

≥ π(t) (1− ε) + ε− w(t)

≥ π(t−m) (1− ε)m + 1− εm+1 −
h
w(t) + (1− ε)w(t−1) + ...+ (1− ε)mw(t−m)

i
60

Prove that π(t) P→ 1.
Define Wtm to be

Wtm = w(t) + (1− ε)w(t−1) + ...+ (1− ε)mw(t−m)

Because w(t) P→ 0, for any δ1 > 0, δ2 > 0, there exists N > 0 such that for any t ≥ N ,

Pr
h¯̄̄
w(t) − 0

¯̄̄
< δ1

i
> 1− δ2

Now, given any δ1 > 0, δ2 > 0, let m be such that

max
©
(1− ε)m , εm+1

ª
<

δ1
5

Also, let δ1 satisfy δ1 < δ1
5(m+1) , and δ2 satisfy δ2 < δ2

m+1 . Then,

Pr

½
|Wkm − 0| < δ1

5

¾
≥ Pr

(
tT

j=t−m

¯̄̄
w(j) − 0

¯̄̄
< δ1

)

= 1− Pr
(

tS
j=t−m

¯̄̄
w(j) − 0

¯̄̄
≥ δ1

)

≥ 1−
tP

j=t−m
Pr
n¯̄̄
w(j) − 0

¯̄̄
≥ δ1

o
≥ 1− δ2 (12)

Together, let N be defined as N = max {N,m}. Then, for each k > N ,

Pr
h¯̄̄
π(t+1) − 1

¯̄̄
< δ1

i
= Pr

h¯̄̄
π(t−m) (1− ε)m − εm+1 +Wkm

¯̄̄
< δ1

i
≥ Pr

·¯̄̄
π(t−m) (1− ε)m − εm+1

¯̄̄
<
2δ1
5
, |Wkm| < δ1

5

¸
= Pr

·
|Wkm| < δ1

5

¸
(13)

Last equality holds because
0 ≤ π(t−m) ≤ 1¯̄̄

π(t−m) (1− ε)m − εm+1
¯̄̄
≤ ¯̄(1− ε)m − εm+1

¯̄ ≤ |(1− ε)m|+ ¯̄εm+1¯̄ < 2δ1
5

From (12) and (13), we conclude that

Pr
h¯̄̄
π(t+1) − 1

¯̄̄
< δ1

i
≥ 1− δ2

Therefore, πk converges to 1 in probability.
Therefore, for any δ > 0, there exists M such that for any t > M ,

Pr
h
X(t) = Y (t)

i
> 1− δ

Since Y (t)follows a stationary distribution, X(t) converges to a stationary process in probability.

61

Figure 1: Gibbs Sampler Output of Exit Value (True Value:0.4)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

de
lta

x

Series1

Figure 2: Gibbs Sampler Output of Entry Cost (True Value:0.4)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

iteration

de
lta

E

Series1

Figure 3: Gibbs Sampler Output of Capital Coefficient
(True Value: 0.2)

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

a Series1

Figure 4: Gibbs Sampler Output of the Profit Shock Standard Error
(True Value: 0.4)

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

si
gm

a1

Series1

Figure 5: Gibbs Sampler Output of the Entry and Exit Shock Standard
Error (True Value: 0.4)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

si
gm

a2

Series1

Figure 6: Gibbs Sampler Output of the Capital Stock Transition
Parameter b1 (True Value: 0.1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

b1 Series1

Figure 7: Gibbs Sampling Output of Capital Transition Parameter b2
(True Value: 0.1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

b2 Series1

Figure 8: Gibbs Sampler Output of Capital Stock Transition Shock
Standard Error sigmau (True Value: 0.4)

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

0.42

0.425

1 1001 2001 3001 4001 5001 6001 7001 8001 9001
iteration

si
gm

au

Series1

