since P_1 plays the same role for the manifold \mathcal{R} as does P_0 for \mathcal{X} . The LM statistic (3.48) is

$$\frac{1}{\tilde{\sigma}^2} (\boldsymbol{y} - \tilde{\boldsymbol{x}})^{\mathsf{T}} \tilde{\boldsymbol{P}}_X (\boldsymbol{y} - \tilde{\boldsymbol{x}}). \tag{5.76}$$

If we express the statistic in terms of quantities that are O(1), we obtain

$$\frac{1}{\tilde{\sigma}^2} n^{-1/2} (\boldsymbol{y} - \tilde{\boldsymbol{x}})^{\mathsf{T}} \tilde{\boldsymbol{X}} \left(n^{-1} \tilde{\boldsymbol{X}}^{\mathsf{T}} \tilde{\boldsymbol{X}} \right)^{-1} n^{-1/2} \tilde{\boldsymbol{X}}^{\mathsf{T}} (\boldsymbol{y} - \tilde{\boldsymbol{x}}). \tag{5.77}$$

Like \hat{X}_t , \tilde{X}_t is asymptotically nonstochastic. Therefore, from (5.75),

$$n^{-1/2}\tilde{\mathbf{X}}^{\top}(\mathbf{y} - \tilde{\mathbf{x}}) = n^{-1/2} \sum_{t=1}^{n} \tilde{\mathbf{X}}_{t}^{\top} \tilde{u}_{t}$$

$$= n^{-1/2} \sum_{t=1}^{n} \mathbf{X}_{0t}^{\top} (\mathbf{M}_{1} \mathbf{u})_{t} + o(1)$$

$$= n^{-1/2} \sum_{t=1}^{n} (\mathbf{M}_{1} \mathbf{X}_{0})_{t} u_{t} + o(1)$$

$$= n^{-1/2} \mathbf{X}_{0}^{\top} \mathbf{M}_{1} \mathbf{u} + o(1).$$

The matrix $n^{-1}\tilde{X}^{\top}\tilde{X}$ is asymptotically nonstochastic, just as $n^{-1}\hat{X}^{\top}\hat{X}$ is, and so the LM statistic (5.77) is asymptotically equivalent to

$$\boldsymbol{u}^{\mathsf{T}}\boldsymbol{M}_{1}\boldsymbol{X}_{0}(\sigma_{0}^{2}\boldsymbol{X}_{0}^{\mathsf{T}}\boldsymbol{X}_{0})^{-1}\boldsymbol{X}_{0}^{\mathsf{T}}\boldsymbol{M}_{1}\boldsymbol{u} = \sigma_{0}^{-2}\boldsymbol{u}^{\mathsf{T}}\boldsymbol{M}_{1}\boldsymbol{P}_{0}\boldsymbol{M}_{1}\boldsymbol{u}. \tag{5.78}$$

Since $S(X_1)$ is a subspace of $S(X_0)$, we have $P_1P_0 = P_0P_1 = P_1$, from which it follows that $M_1P_0M_1 = P_0 - P_1$. Expression (5.78) thus becomes

$$\sigma_0^{-2} \boldsymbol{u}^{\mathsf{T}} (\boldsymbol{P}_0 - \boldsymbol{P}_1) \boldsymbol{u} = \sigma_0^{-2} \boldsymbol{u}^{\mathsf{T}} \boldsymbol{P}_2 \boldsymbol{u}. \tag{5.79}$$

Comparison of (5.79) with (5.72) shows that the LM statistic is asymptotically equal to the Wald statistic. Thus it too is asymptotically $\chi^2(r)$ under the null hypothesis.

The third of the three test statistics discussed in Section 3.6 was the one based on the likelihood ratio principle, the pseudo-F statistic (3.50). Since we are interested in asymptotic results only, we rewrite it here in a form in which it should be asymptotically distributed as $\chi^2(r)$:

$$\frac{1}{s^2} \left(SSR(\tilde{\boldsymbol{\beta}}) - SSR(\hat{\boldsymbol{\beta}}) \right) \tag{5.80}$$

and will (somewhat loosely) refer to it as the LR statistic. We have already seen that $s^2 \to \sigma_0^2$ as $n \to \infty$. It remains to show that $SSR(\tilde{\beta}) - SSR(\hat{\beta})$, when divided by σ_0^2 , is asymptotically $\chi^2(r)$. From (5.64), we have

$$\hat{\sigma}^2 = \frac{1}{n} \mathbf{u}^{\mathsf{T}} \mathbf{M}_0 \mathbf{u} + o(n^{-1}),$$