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Abstract

The discrete choice to adopt a financial innovation affects a household’s exposure to

inflation and transactions costs. We model the benefits and costs of this decision

using a conditional choice probability estimator and drawing on the finite dependence

property of the problem. A novel feature is that preference parameters are estimated

separately, from the Euler equations of a shopping-time model of consumption and

money demand. We apply this method to study ATM card adoption in the Bank of

Italy’s Survey of Household Income and Wealth. There, the implicit adoption cost

varies significantly by age, education, and region.
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1 Introduction

We study how households adopt a new financial product. We are motivated by the obser-

vation that new financial and payment technologies often are not universally adopted or are

adopted slowly and unevenly despite their apparent benefits. While we study the adoption

of automated teller machine (ATM) cards, our findings may apply to innovations such as

contactless payments, online banking, and mobile payments, and so may inform the inclusive

introduction of new payment and financial technologies. Thus our research is relevant in the

context of financial inclusion and financial literacy initiatives that have been launched in

many countries, such as the in EU by the Directorate-General for Financial Stability, Fi-

nancial Services and Capital Markets Union, in the US by U.S. Department of the Treasury

(2016), in Canada by Financial Consumer Agency of Canada (2021), Mexico (Cassimon et al.

(2022)), or in India by Department of Financial Services.

We study the adoption of ATM cards in Italy between 1989 and 2004, as tracked in

the Bank of Italy’s Survey of Household Income and Wealth, a rich survey on household

financial decisions. Specifically, we provide a measure of households’ perceived adoption

costs and benefits. Consumers gain ongoing benefits after adopting an ATM card, which

may, for example, help them use cash efficiently. These efficiency gains should be substantial

for the households in our data set for two reasons. First, Italian households are among the

most cash-intensive payers in the EU and among comparable economies worldwide. Second,

consumers who withdraw cash from a bank teller are limited to branch hours, typically on

weekday mornings and, sometimes, for an hour in the afternoon.

Yet, in the data set, Italian households’ uptake of ATM cards was slow and incomplete.

Possible explanations include high adoption costs or barriers relative to the benefits from

adopting the technology. In this paper, we estimate the implicit adoption costs and we also

provide a framework in which counterfactual scenarios can be simulated. For example, we

consider the scenario where all households adopt the financial innovation and estimate what

compensation would achieve this universal adoption.

Households’ adoption patterns have two features that we strive to incorporate into the

modelling and estimation strategy. First, financial technology adoption is a dynamic, discrete

choice (DDC) where the household weighs the future benefits of the new technology against

a one-time adoption cost. Second, households are heterogeneous in how they use the new

technology and hence benefit from it.

There are three key features of the estimator. First, we combine a simulation estimator

with the estimation of preference parameters via Euler equations for households with or

without ATM cards. The Euler equations come from a shopping-time model that describes

both the intensive margin of money-holding and the additional gains from holding an ATM

card. Time effects in the implied money-demand function also allow for the diffusion of
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ATM machines and bank branches over the historical sample. It is important to control for

this diffusion in banking services in estimating the adoption cost. Second, we allow for both

observed and unobserved heterogeneity among households, in their cash-holding behavior.

Tracking their decisions over time allows us to control for this heterogeneity, which we find

to be substantial. Third, we assume that adoption is irreversible in that a household cannot

‘un-adopt’ the new technology.

Our main finding is that, on the one hand, adopting an ATM card has non-trivial adoption

costs for households. On the other hand, the card also generates efficiencies for households.

Consistent with the literature on financial inclusion, we find that older, less educated in-

dividuals and those residing in economically less prosperous reasons face higher barriers to

adopting the ATM card. We compute the proportion of new adopters when counterfactual

financial incentives are offered. While moderate financial incentives are effective for younger

and well-educated consumers, older households or those with less formal education require

larger incentives.

Related Literature The study contributes to the literature on adoption of financial in-

novation by proposing a conditional choice probability estimator for the parameters of these

benefits and costs. It also showcases recent advances in the estimation of structural dynamic

discrete choice models.

We build on several studies on household and consumer adoption of transaction technol-

ogy. In studying cash holding using the data set collected from Italian households, we follow

in the footsteps of Attanasio et al. (2002), Lippi and Secchi (2009), and Alvarez and Lippi

(2009). Attanasio et al. (2002) study the demand for money using a generalized inventory

model, and note the effects of ATM card usage. They then calculate the welfare cost of infla-

tion. Lippi and Secchi (2009) show how to account for trends in the availability of banking

services in order to estimate money-demand parameters. Alvarez and Lippi (2009) use a

inventory-theoretic framework. They model the household’s cash withdrawal conditional on

the adoption of an ATM card. Their framework also measures changes over time in with-

drawal costs. They find a relatively small benefit to adopting an ATM card, although they

note that it is based only on a reduction in withdrawal costs and not on the card’s use as a

debit card. Yang and Ching (2014) model both the extensive and intensive margins, using

the Baumol-Tobin model to describe the latter. They estimate a significantly larger cost of

ATM card adoption than previous papers although they focus mainly on older consumers.

Investigating the adoption of automated clearing house (ACH) payments by US consumers

and banks, Ackerberg and Gowrisankaran (2006) find that the large adoption cost borne by

consumers hindered the replacement of paper checks.

We adopt a general, shopping-time model of money holding that is also widely used in
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macroeconomic theory and allows for the trend and elasticity findings of Attanasio et al.

(2002) and Lippi and Secchi (2009). This shopping-time model is derived from the money-

in-the-utility model in Walsh (2003) to which we add a technology parameter for ATM card

adoption. A key feature is the inclusion of unobserved heterogeneity in the money-demand

equation that follows from the shopping-time model. This feature is motivated by Lippi

and Secchi (2009) and Felt (2020) who find that the impacts of payment innovations are

overstated when unobserved heterogeneity is omitted. The shopping-time model is used to

estimate a subset of the parameters of the utility function conditional on the discrete action

using Euler equation methods, as suggested by Pakes (1994), albeit in a different context.

Finally, to estimate the cost of adoption we employ a conditional choice simulation estima-

tor in the spirit of Hotz et al. (1994) and Hotz and Miller (1993). However, the computational

burden is significantly reduced by exploiting the finite dependence nature of the adoption

problem. Finite dependence is implied by the assumption that ATM card adoption is once

and forever. Thus we estimate the dynamic model by simulating only one-period ahead as

shown by Arcidiacono and Miller (2011) and illustrated in Arcidiacono and Ellickson (2011).

A particular feature of our setting with finite dependence is that we can identify the house-

hold discount factor as shown in Abbring and Daljord (2020). The DDC presented in this

paper falls into the class of Euler Equations in Conditional Choice Probabilities (ECCP) es-

timators defined in Kalouptsidi et al. (2021). We use the Euler equations in Aguirregabiria

and Magesan (2013) and Aguirregabiria and Magesan (2023) for the ATM card adoption

decision problem. We also use a parametric bootstrap procedure (Kasahara and Shimotsu

(2008)) to compute confidence intervals for our two-step estimator where the first step is the

partial estimation of the shopping time model and the transition functions, and the second

step is e.g. the ECCP estimator.

Section 2 describes the data sources. Section 3 outlines the household decision problem.

Section 4 describes the intratemporal Euler equations while Section 5 deals with the state

variables and transition functions. Section 6 then discusses the dynamic discrete choice

process and Section 7 presents the results. Section 8 concludes.

2 Data Sources

2.1 Survey of Household Income and Wealth

Our study relies on household-level data from the Bank of Italy’s Survey of Household Income

and Wealth (SHIW), which is the gold standard for panel surveys involving wealth and

savings. It has detailed information on account status, wealth, and consumption, and the

largest and longest coverage of any such panel. The SHIW is the main data source for studies
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on money demand and financial innovation by Attanasio et al. (2002), Alvarez and Lippi

(2009), and Lippi and Secchi (2009), among others.

The SHIW is a biennial survey run by the Banca d’Italia. We use the 1991, 1993, 1995,

1998, and 2000, 2002, and 2004 waves. We stop at 2004 as one of our main variables—

average currency holdings—is discontinued from 2006 onwards with the exception of 2008.

The three year spacing from 1995 to 1998 was a result of the Banca d’Italia switching

survey providers. The Banca d’Italia spends considerable resources to ensure that the data

is nationally representative, as outlined by (Brandolini and Cannari, 1994). The SHIW

is a rotating panel with about 8,000 households per wave. The rotating panel design is

incorporated because there is an attrition rate of roughly 50%. (Jappelli and Pistaferri, 2000)

provide an extensive discussion of the quality of the SHIW data and also provide a comparison

with Italian National Accounts data to address issues of sample representativeness, attrition,

and measurement.

ATM cards involve a small annual fee, but no additional charges for withdrawals at

machines owned by the issuing bank. Their first benefit is that they allow card-holders

to withdraw cash rapidly and when banks are closed. Checking accounts bear interest, so

the ability to make withdrawals at lower cost can reduce foregone interest earnings from

holding cash. A second benefit is that they can be used as point-of-sale debit cards for retail

transactions. Despite these benefits, though, the use of cash remained very widespread in

Italy throughout this period.

Table 1 reveals that the fraction of households with an ATM card in 1991 was 29% and

that it steadily increased to 58% in 2004. Although the survey has a high attrition rate,

many actual ATM card adoptions can be observed. On average, the share of households who

did not have an ATM card in the previous wave of the survey, were in both the current and

previous waves, and had a card in a given, current wave was 16.7%. Table 1 next focuses on

average currency holdings, consumption, and wealth. All the nominal variables are expressed

in 2004 equivalent euros. During this period the average currency holdings fell for both the

households with and without an ATM card. However, with the exception of 1991 the average

cash holdings of ATM holders were lower than those of non-ATM holders. Not surprisingly,

those with ATM cards tended to have higher consumption and financial wealth than those

without ATM cards. Notice that the difference in consumption and wealth increased over

time as was detailed by Jappelli and Pistaferri (2000).

The data support the assumption that ATM card adoption is irreversible. Of the observed

households who appear in the data more than once, only 920 or 11.6% appear to adopt the

card in one period and then report not having it in a later period. For 662 of these 920

households, at least one of the following variables is not reported consistently across time

periods: the age, gender or education level of the household head, the region where the
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household resides or the number of adults living in the household. The inconsistent adoption

pattern of these households may therefore be explained by their inconsistent overall reporting

or a change in the reporting household member from one period to the next.

2.2 Inflation and Regional Interest Rates

We also use data on inflation and interest rates from a variety of sources. The inflation

rate, measured as the per-annum change in consumer prices, is taken from the International

Financial Statistics of the International Monetary Fund. The data are on an annual basis

from 1989 to 2010. For regional nominal deposit interest rates we draw on the data assembled

by Lippi and Secchi (2009) who aggregated a variety of historical tables at a quarterly

frequency. The quarterly data are then aggregated to an annual frequency using simple sum

averaging to derive annual data from 1989 to 2010. We refer to Alvarez and Lippi (2009) for

more details on the data sources and institutional details.

3 Household choice problem

We propose to model a household’s decision to adopt a financial innovation, specifically an

ATM card, as an optimal stopping process. A household will adopt the innovation when

it expects the benefits of adoption to outweigh the opportunity costs of not adopting. The

model is dynamic since expectations about adoption benefits are computed from summing

up (discounted) future per-period utilities.

3.1 Optimal Stopping

A household in period t is described by:

1. ATM card adoption status from the previous period It−1 ∈ {0, 1}, where 1 denotes

adoption.

2. Choice-specific adoption shocks ϵt = (ϵ0t , ϵ
1
t ) ∈ R2 where ϵIt is incurred for choosing

I ∈ 0, 1 in period t. These shocks are known to the household before it makes its

decision, but they are not observed by the econometrician. We assume that εIt are

independently and identically distributed across adoption choices, households, and

over time.

3. A vector of state variables zt that are exogenous, i.e. do not depend on It−1. These

state variables are for example the size of the household, its wealth, education and age

of its members.
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A household’s utility depends on the adoption status of financial innovation It, its real

consumption expenditures ct, and its real money holdings mt, and is given by u(It, ct,mt). It

is increasing in consumption (uc > 0). We consider a shopping-time model of money-holding,

as outlined by McCallum (1989) (pp 35–41) and Walsh (2003) (pp 96–100). Holding money

also adds to utility because it reduces the time spent shopping and so adds to leisure (um > 0).

We also impose the usual concavity assumption (ucc < 0, umm < 0). Using a financial

innovation, or more specifically access to cash through an ATM card, increases the utility of

consumption for a given real cash balancemt because the household can shop more efficiently.

In the shopping-time utility function, this benefit shows up as u(1, c,m) > u(0, c,m). We

specify the functional form of u in section 4.

Adopting an ATM card is costly. It involves a deterministic cost κ̄ and the choice-specific

cost shock εℓt:

κt(It, It−1, ϵt) = 1{It−1 = 0}(It − It−1)κ̄+ σκ

∑
ℓ=0,1

ϵℓt1{It = ℓ}. (1)

The household’s per-period payoff is thus given by

u(It, ct,mt|zt)− κt(It, It−1, ϵt). (2)

With the specification of the cost shock, the period utility can written in terms of observed

and unobserved components:

u(It, ct,mt|zt)− 1{It−1 = 0}(It − It−1)κ̄︸ ︷︷ ︸
observed

−σκ

∑
ℓ=0,1

ϵℓt1{It = ℓ}︸ ︷︷ ︸
unobserved

. (3)

In each period t the household decides on real consumption, ct, and real cash holdings,

mt. These two choice variables are continuous and observed by the econometrician. If the

household does not yet have an ATM card (It−1 = 0), it decides whether to adopt or not,

that is, chooses It ∈ {0, 1}.
Let A denote the end of household’s planning horizon, that is the time period where the

household decides for the last time. The household discounts future payoffs with discount

factor β ∈ [0, 1). A household’s state is fully described by (It−1, zt, ϵt). The household chooses

the sequence of ATM adoption decision, consumption, and money holding {Iτ , cτ ,mτ}, τ =

t, . . . , A to maximize the discounted sum of future payoffs or the value function:

Wt(It−1, zt, ϵt) = max
{Iτ ,cτ ,mτ}

Et

(
A∑

τ=t

βθ−t [u(Iτ , cτ ,mτ |zτ )− κtau(Iτ , Iτ−1, ϵτ )]

)
. (4)
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3.2 The adoption decision

To study the optimal dynamic decision of adopting an ATM card, it useful to define the

conditional choice value function (see for example Hotz and Miller (1993)) as the value of

choosing It net of the choice specific shock εℓt :

v(It, zt) = u(It, ct,mt|zt)− 1{It−1 = 0}(It − It−1)κ̄+ β
(
E(W (It, ϵt+1, zt+1|zt))

)
, (5)

where the expectation is taken by integrating out the stochastic components of the state

variable zt+1 and the future adoption shocks, conditional on the state variable zt and the

choice It.

Recall that after a household adopts the technology, it keeps it forever or until the end

of the decision problem’s time horizon. Let p(It|It−1, zt) denote the probability of adopting

conditional on adoption status It−1 and state zt.

By irreversibility, the probability of unadopting is zero (p(It = 0|It−1 = 1, zt) = 0) and the

probability of keeping the ATM card is one (p(It = 1|It−1 = 1, zt) = 1). For this reason, the

probability of interest is p(It = 1|It−1 = 0, zt), which corresponds to 1−p(It = 0|It−1 = 0, zt).

To economize on notation we will from now abbreviate pt = p(It = 1|It−1 = 0, zt). Assume

that the household has not adopted the ATM card prior to time t, thus It−1 = 0. At time t,

the household makes the adoption decision based on maximizing W (0, zt, ϵ0) for the revealed

choice specific error terms ϵ0t and ϵ1t , that is by comparing:

V 1(ϵt, zt) := v(1, zt)− κ̄− σκϵ
1
t (6)

V 0(ϵt, zt) := v(0, zt)− σκϵ
0
t (7)

The adoption rule V 1(ϵt, zt) > V 0(ϵt, zt) can be re-written in terms of the adoption cost

and the conditional value functions:

V 1(ϵt, zt) > V 0(ϵt, zt)

⇔ v(1, zt)− κ̄− v(0, zt) > σκ

(
ϵ1t − ϵ0t

)
. (8)

Keeping in mind that the right hand side of (8) is a random variable whose distribution is

known up to its scale σκ, the probability of adoption is given by:

pt = prob

[
v(1, zt)− κ̄− v(0, zt)

σκ

≥ ϵ1t − ϵ0t

]
. (9)
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After setting up the household’s decision problem, we will now work through the econo-

metric building blocks and the estimation procedure.

4 Intratemporal Euler equations

We exploit the fact, that conditional adoption choice It, consumption choices ct, and real cash

holdings mt have to satisfy the standard Euler equations. In particular, the opportunity cost

of holding real cash balances is the interest that could be earned when holding the deposits

on an interest-bearing checking account. Let rt denote the nominal interest rate. The intra-

temporal Euler condition is given by:

um(It, ct,mt) = rtuc(It, ct,mt). (10)

In this equation, uc and um are the first derivatives of u with respect to consumption c

and cash holdings m. Equation (10) can be derived following Carlstrom and Fuerst (2001).

Through this intratemporal Euler condition, the dimension of the per-period decision prob-

lem condition on ATM adoption status has been reduced to one from two. Given c and I,

we can solve for the optimal m using equation (10).

To motivate the per-period utility function, we provide evidence that adoption is directly

associated with changes in money holding. Figure 1 plots the money-consumption (mr/c)

and wealth-consumption (w/c) ratios over sequences of three waves of the SHIW for the

adopters, denoted by (0,0,1) and (0,1,1), the always adopters, denoted by (1,1,1), and the

never-adopters, denoted by (0,0,0). The plots apply to three time windows: 1991–1993–1995

(denoted W1), 1998–2000–2002 (denoted W2), and 2000–2002–2004 (denoted W3). The

upper panel shows the ratio mr/c. It illustrates that the never-adopters have the highest

ratios, followed by adopters, and then the always-adopters. In sequence of three waves, the

ratio mr/c is decreasing, consistent with the earlier observation (in section 2.1) that the

overall mr/c ratio is falling over time. The lower panel shows the w/c ratio for the same

households. Comparing the three groups in the upper panel suggests that adoption per

se is associated with a fall in money holding relative to consumption (in time periods W1

and W2), and economizing on money balances, which will raise utility. In addition, future

adopters already hold less money compared to consumption than those who will not adopt

in the next period, as can be seen by comparing (0,1,1) to (0,0,0).

We specify the per-period utility function u(c,m, I) of each household i in period t as

follows:

u(Iit, ci,t,mi,t) = (1 + γIit)
ω
c1−α
i,t − 1

1− α
+ eω·(ηi+δt)

m1−ω
it − 1

1− ω
, (11)
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with parameters (γ, α, ω), household-specific parameters ηi and period-specific parameters

δt. As before, the variable Iit equals 1 if the household has adopted an ATM card and 0, if

not.

One verifies immediately that for α ≥ 1 and ω ≥ 1, it is true that uc > 0, um > 0

and ucc < 0, umm < 0 which are the usual montonicity and concavity conditions. With the

specification in (11), u is additively separable in consumption c and cash holdings m since

it consists of one summand that varies in c and one summand that varies in m. Each of

those summands has the constant relative risk aversion (CRRA) shape with risk aversion

parameter α for the consumption part and parameter ω for the cash holdings part.

In the utility function (11), we allow for household and time varying heterogeneity in

the parameters. The inclusion of household fixed-effects ηi is motivated by the observation

that future adoption is correlated with lower cash balances relative to consumption, as doc-

umented in Figure 1. Similarly, year-specific fixed effects reflect that cash balances relative

to consumption fall over the sample period for adopters and non-adopters. This enhanced

efficiency of money-holding may reflect the diffusion of bank branches and ATMs from 1989

to 2004, as documented by Lippi and Secchi (2009). ATM card adoption leads to increased

utility from consumption due to the “technology parameter” γ > 0.

Estimation of the parameters of the utility function begins with the intratemporal Euler

conditions that specialize (10):

rit ·
(
(1 + γiIit)

ω · c−α
it

)
= eω(ηi+δt)m−ω

it .

Recall that the adoption costs do not interact with c and m in the per-period utility and

hence would disappear in the partial derivatives uc and um. Taking logarithms on both sides

then gives

ln(rit) + ω · ln(1 + γi)Iit − α ln(cit) = ω · (ηi + δt)− ω ln(mit). (12)

For general α, ω ∈ (1,∞], isolating ln(m) on the right hand side yields

ln(mit) = − ln(rit)

ω
+

α ln(cit)

ω
+ ηi + δt − ln(1 + γi)Iit. (13)

In the limiting case α = ω = 1, the utility function is still well-defined since limα→1
x1−α−1
1−α

=

ln(x) for all positive values of x. Equation (12) then simplifies to:

ln

(
mitrit
cit

)
= ηi + δt − ln(1 + γi)Iit. (14)

Given consumption c and ATM card adoption I, equation (13) or (14) implicitly defines the

optimal level of cash holdings m.

9



The parameters of interest are thus α, ω, ηi, δt and γi. In the data, c,m, r and I are

observed. To estimate the parameters of interest, we attach an error term to the money

demand equations (13) and (14). Since the money demand equation contains a household

level fixed effect on the right hand side, a linear model with within-household fixed effects

is appropriate. Since the same household is observed multiple times and some households

are observed before and after adoption, the coefficient of Iit is identified. The results of the

regressions for the intratemporal Euler equations (13) and (14) are summarized in Table 2.

The left panel of Table 2 presents estimates of (13). It shows that point estimates are

α̂ = 1.52 and ω̂ = 6.68 so that the utility function has considerable curvature in both

consumption and money balances. However, the standard errors on these parameters are

large enough that the special case with α = ω = 1 (log utility) is also of interest. The

standard errors are shown in the right panel of Table 2 and we present calculations using

both utility functions as a point of comparison.

The first row and panel of Table 2 show that γ̂ = 0.23 with a standard error of 0.03.

This value and its precision are largely unaffected if we switch to log utility. We also find

that allowing γ to vary with observable household characteristics does not improve model

fit as measured by R2. In what follows we will use the specifications with constant γ as

reported in the first row of Table 2. The key finding, then, is that γ̂ is positive and precisely

estimated. Thus, ATM-card adoption raises utility by allowing households to use money

more efficiently.

5 State variables and transition functions

The model includes three types of observable state variables that make up the vector

(It−1, zt): static state variables, time-varying deterministic state variables, and time-varying

stochastic state variables.

The first group includes time-invariant or static state variables which describe the house-

hold composition, education level, and place of residence and which do not change from

period to period. We need to specify transition functions for the time-varying state vari-

ables. The second group are deterministic and time-varying state variables such as the age

of the household head and their employment status. Age advances by the length of the

time period between t and t+ 1, in the case of the SHIW by 2 years. Employment status is

maintained until age 65 when the household head retires. The third group are time-varying

stochastic state variables, namely inflation πt and interest rates rt, wealth wt and adoption

status It. We discuss them in this order below.
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5.1 Interest rate and inflation processes

The inflation rate πt is the year-to-year growth rate of the consumer price index, from 1989 to

2010. Interest rates rt are regional nominal deposit rates for each of the twenty administrative

regions of Italy.

To parametrize the transition function for {πt, rt} we use ordered VARs and test the

lag length with standard information criteria. It makes sense to penalize models with large

numbers of parameters given the short time-series sample. As in the rest of the paper,

t advances in two-year intervals. We work with natural logarithms to guarantee positive,

simulated interest rates and inflation rates.

We find that inflation can be described autonomously:

lnπt = a0 + a1 ln πt−1 + ϵπt, (15)

with ϵπt ∼ IID(0, σ2
π). In each region the deposit rate is well-described by:

ln rt = b0 + b1 ln rt−1 + b2 lnπt + ϵrt, (16)

with ϵrt ∼ IID(0, σ2
r). This setup ensures that cov(ϵπt, ϵrt) = 0 (which simplifies simula-

tions). We use this specific ordering because it fits with the difference in the time periods to

which the inflation rate and interest rate in a given year apply.

We estimate the r-equation for each of the twenty regions and report the average estimates

over this set (rather than averaging the interest rates, which would lead to an understatement

of uncertainty in a typical region). In practice, though, the variation in estimates across

regions is quite small.

Table 3 contains the estimates for the parameters, their standard errors, and the two

residual variances. Later, we will assume that {ϵπt, ϵrt} are jointly normal and, with this

ordering, the two shocks are uncorrelated.

5.2 Wealth and the consumption decision

We also estimate reduced form equations for the wealth transition wt+1 = fw(wt, zt) and the

consumption decision ct = f c(It, zt). In our model, wealth will depend on previous period

wealth, but the consumption decision does not depend on lagged variables. Graphically, the

lower panel of Figure 1 suggests that adoption is associated with a rise in financial wealth

relative to consumption in W1 and W3 but not W2. We do observe less variation over time in

financial wealth relative to consumption for non-adopters. We account for these observations

in two ways: first, we include the fixed effects from equations (13) and (14) in the wealth
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transition and in the consumption decision, and second, we assess whether the transitions

for adopters and non-adopters are statistically different.

We use ordinary least squares (OLS) regression of the logarithm of current period wealth

on the observable state variables zt and previous period wealth. We find that the estimated

transitions for adopters and non-adopters are not statistically different. We thus pool the

sample to estimate the transition function fw which does not depend on the ATM adoption

status.1

Using the same wealth transition for adopters and non-adopters ensures that the discrete

choice process has the renewal property (see Rust (1987)). If the state variables evolve

independently of the ATM card decision, then E(u(It, ct,mt)) depends on It, but not on the

adoption history I1, . . . , It−1. The renewal property could potentially be used to generalize

to a setting where adoption is not a terminal state.

Given their state zt, households decide how much to consume per period. In contrast

to the wealth transition, we estimate separate decision functions for adopters (It = 1) and

non-adopters (It = 0). The decision functions f c(It, zt) are computed using OLS regression

of the logarithm of consumption ct on observable state variables zt, including wealth wt. Fur-

thermore, the fixed effects ηi also enter the consumption equation as independent variables.

These reduced form equations allow us to re-parametrize the utility function as u(It, zt) and

also compute u(0, zt)− u(1, zt) below.

6 The dynamic discrete choice process

The dynamic discrete choice (DDC) process optimal stopping problem is tractable under

certain assumptions. This section states these assumptions and then specifies the functional

form of the model components and the parameters to be estimated.

The first assumption is additive separability of the per-period utility in the observables

and unobservables, see (2). The second assumption is that the random variables κ(It|It−1)

are independently and identically distributed over time with probability density function

g. The third assumption is condition independence which means that the state variables zt

follow a Markov process that is not affected by the unobservable adoption cost κt. To fulfill

this assumption, it suffices that the probability density function of the state variable zt has

the property f(zt+1|It, ϵt+1, zt) = f(zt+1|zt).
Typically, κ is assumed to follow a parametric distribution and the structural parameters

to be estimated are the parameters characterizing this distribution. Since adoption proba-

bilities depend on the difference ϵ1t −ϵ0t , but not on the individual error terms, there is no loss

1Fractional polynomials did not yield a large improvement in fit relative to the added complexity. The
results are available upon request.
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of generality in normalizing ϵ0t = 0. This normalization means that only one choice-specific

error term, namely ϵ1t , is left. We will therefore denote this error by σκϵ where σκ is the

variance of κ relative to a chosen distribution for ϵ.

In this paper, ϵ is a normal random variable. We conducted robustness checks for a stan-

dard logistic random variable and found that the results were quantitatively and qualitatively

very similar.

If v(1, zt)− v(0, zt) is known and adoption choices at t are observed then the structural

parameters can be estimated from the condition (9). Note that κτ , τ > t enters v(zt, 0) since

the household may adopt later and then pay the adoption cost. In the following section, we

show that the terminal choice assumption addresses this recursivity problem.

6.1 Derivation of linear and MLE specifications

We now describe how the conditional value functions v(I, z) are estimated from the data.

The key points are first, to exploit the assumption that ATM card adoption is a terminal

choice and second, to show that the structural parameters are identified.

We use the Euler equations in Aguirregabiria and Magesan (2013) and Aguirregabiria and

Magesan (2023) for the ATM card adoption decision problem. From these Euler equations

we retrieve moment conditions and the likelihood. For the remainder of this section, we

will re-parametrize the utility function in terms of the exogeneous state vector u(I, c,m) =

u(I, c(I, z),m(c(z))) = u(I, z). The functional forms of c(I, z) and m(c) will be derived

further below.

As before ϵ follows a normal distribution with mean 0 and variance 1, corresponding to

a dynamic probit model:

0 =
(
u(1, zt)− (1− β2)κ̄− u(0, zt)

)
− σκΦ

−1(pt)

− β2σκ

∫ (
ϕ(Φ−1(pt+1))− (1− pt+1)Φ

−1(pt+1)
)
f(zt+1|zt)dzt+1.

(17)

From this Euler equation, Φ−1(pt) can be expressed as:

Φ−1(pt) =
u(1, zt+1)− u(0, zt+1)− (1− β2)κ̄

σκ

+ β2E
(
(1− pt+1)Φ

−1(pt+1)− ϕ
(
Φ−1(pt+1)

))
,

(18)

and if we apply the function Φ(·) to both sides:

pt = Φ

(
u(1, zt)− u(0, zt)− (1− β2)κ̄

σκ

+ β2E
(
(1− pt+1)Φ

−1(pt+1)− ϕ
(
Φ−1(pt+1)

)))
.

(19)

We note that the Euler equation for a terminal choice in the dynamic logit case also follows
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from Arcidiacono and Miller (2011). In what follows, we will refer to the equation (18) as

the linear specification and the equation (19) as the MLE specification.

Now, if we are able to compute u(1, z)−u(0, z), pt, and E((1−pt+1)Φ
−1(pt+1)−ϕ(Φ−1(pt+1)))

we can fit a linear model or a fractional probit model to obtain estimates of the structural

parameters κ, σκ and also the discount factor β2. Note that β2 is the discount factor cor-

responding to t in 2-year units. Specifically, our estimation strategy will be as follows:

First, we attach an econometric error term to the linear specification (18), as suggested by

Kalouptsidi et al. (2021).2 We then use a least squares estimator. Second, we maximize the

pseudolikelihood corresponding to equation (19), the MLE specification. This is the same

maximization problem as for a fractional probit regression. The next subsection provides

the algorithm for u(1, z)− u(0, z), pt, and E((1− pt+1)Φ
−1(pt)− ϕ(Φ−1(pt+1))).

3

6.2 Algorithm

Finally, the probability to adopt an ATM card in period t comes from a static binary probit

model of the dichotomous variable It on the deterministic state variables and real regional

interest rates. Thus we can compute pt. Since the right hand side of the reduced form

for pt contains stochastic state variables (inflation and regional interest rates), we need to

integrate them out to obtain the offset term E
(
(1− pt+1)Φ

−1(pt+1)− ϕ(Φ−1(pt+1))
)
. We use

the following Monte Carlo algorithm:

First, S denotes number of Monte Carlo draws, Second, N is the number of households

in the sample for which It−1 = 0 and It is observed, and L is the number of distinct regions

that these households live in. To be clear on the timing, the households are observed at two

time intervals t− 1 and t.

For the algorithm, the vector z of state variables is split into three vectors z = (z1, π, r, w)

where z1 consists of all deterministic and static state variables, and the remaining state

variables are Markovian, in particular, π is the inflation rate, r the regional deposit rate and

w is household wealth.

2We use the linear specification with the inverse cumulative normal of the adoption probability on the
left hand side which becomes the dependent variable in the linear model. As discussed by Aguirregabiria
and Magesan (2013), it is also possible to re-arrange this equation so that U appears on the left hand side.
We conducted a detailed simulation study based in which the former specification converges faster. Details
are available upon request.

3To highlight the computational gains, u(z)−1,u(0,z)−(1−β2)κ̄
σκ

+ β2E (·) is equal to EV(κ̄,σκ). Thus, with
the notation in Rust (2000), we can compute, up to simulating p′, EV(κ̄,σκ). Indeed, the algorithm has been
reduced to estimating the structural parameters only using the “outer” steps of the fixed point algorithm
which maximizes the partial maximum likelihood for MLE in Table 4 (ie solving a fractional probit or logit
model).
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Algorithm The expected value E
(
(1− pt+1)Φ

−1(pt+1)−ϕ(Φ−1(pt+1))
)
is approximated in

three steps:

1. Obtain S draws of the state variable zt+1:

(a) Update the deterministic components of (z1)t+1 according to the rules for age and

employment.

(b) Draw S shocks ϵsπ for the inflation process. Simulate S paths for inflation πt+1 as

(ln πt+1)
s = a0 + a1π + σπϵ

s
π.

(c) Draw S shocks ϵsr,l for each of the L regional deposit rates and simulate

ln(rl,t+1)
s = b0 + b1 ln rl,t + b2 ln π

s
t+1 + σrϵ

s
r,l.

(d) Draw S shocks ϵsw,i for each for the wealth processes of the N households. Simulate

S ×N paths of the wealth process wi,t+1 = fw(zi) + σwϵ
s
i,w.

(e) Define (zt+1)
s =

(
(zt+1)1, π

s
t+1, r

s
t+1, w

s
t+1

)
.

2. Compute pst+1 = p(zst+1) using the coefficients of the static binary probit model.

3. Output:

E
(
(1− pt+1)Φ

−1(pt)− ϕ(Φ−1(pt+1))
) ∼= 1

S

∑(
(1− pst+1)Φ

−1(pst+1)− ϕ(Φ−1(pst+1))
)
.

(20)

7 Results

In this section, we present the estimation result for the structural parameters and the two-

period discount factor β2. We also provide an estimate of the monetary compensation that

a household would require to adopt. We use the estimation strategy outlined in Section 6.1

and obtain four sets of results, corresponding to two different functional forms of the utility

(log and CRRA) as well as two distinct estimators (linear and MLE specification).

7.1 Parameter estimates

Table 4 summarizes results for the linear and MLE specifications, and log and CRRA utilities,

for a total of 4 different specifications. We first obtain the coefficient vector (1/σκ, (1 −
β2)κ/σκ, β), subject to σκ > 0 and β ∈ [0, 1). We transform these estimates into κ, σκ, β,

provided β2 ̸= 1. Confidence intervals are obtained from a parametric bootstrap. Note that,

in order to present confidence intervals, we include estimates of the discounted adoption cost

κ̄(1 − β) instead of κ̄ in the table. The reason is that the upper bound of the confidence

15



interval for 1 − β2 is close to 0 while the estimate κ̄(1 − β2) is bounded away from 0.4 In

addition to estimating κ̄, σκ and β2, we also estimate κ̄ and σκ for fixed β ∈ [0, 1). We

find that the estimates in Table 4 differ somewhat across the specification choices for the

estimators (linear or MLE), while different specifications of the per-period utility functions

lead to even larger differences in estimated parameters.

For each parameter, we discuss log utilities, then the more general CRRA utilities, fol-

lowed by a comparison between the two.

Starting with the point estimates for (1 − β2)κ̄, log utility estimates are around 2.9 for

linear and MLE methods, and the 95% bootstrap confidence intervals have approximately

the same width (around 1.35) and shape. In the CRRA case, linear and MLE estimates are

very close (7.65) and differ only after the second decimal. The confidence intervals are very

wide. They are also not symmetric, with the right end point being much further away from

the point estimate than the left end point. Comparing the log and CRRA specifications, log

utility gives lower estimates that also appear to be more precise. We observe that (1− β2)κ̄

and κ̄ are sensitive to assumptions about β2.

The parameter σκ is estimated at 0.82 (0.86) with the linear (MLE) method. For CRRA

utility the estimates are similar, and only differ in the third decimal. The bootstrap con-

fidence intervals for the estimate σκ are large compared to estimate itself. While they are

bounded away from zero at the lower end, the width of the 95% bootstrap confidence interval

is around 3.5 times the value of the parameter estimate for log utilities and 500 times the

value of the parameter estimate for CRRA utilities. A likely explanation is that our esti-

mators involve transforming an estimate by inversion of (1/σκ). Thus, small ranges of the

untransformed estimate can translate into large ranges when the untransformed estimates

are close to zero.

With regards to β2, it appears that the households are less myopic (larger β2) under log

utility than under constant relative risk aversion (CRRA). Specifically, the squared annual

discount factor β2 is around 0.97 to 0.98 for log utility and around 0.78 to 0.80 in the CRRA

case.

Since most previous literature has relied on calibrated values of β2 or investigated a range

of values for β2, it also is instructive to estimate the structural parameters for fixed β2. To

study this issue we set β2 equal to an arbitrary but fixed value b in the interval [0, 1).We then

estimate σκ(b) and κ(b) from the least-square criterion in (18) and the MLE specification in

(19) where β2 = b, respectively. We thus can express the constrained estimates as functions

of the discount factor.5 The graphs of these functions are shown in Figure 2 for four different

4It is possible that ˆ̄κ does not have well-defined second order moment, similar to a Cauchy distribution
or the certain ratios of two normally distributed random variables

5Similar to Yang and Ching (2014) we investigate a range of β2. However, Yang and Ching (2014)
assume the cost of a cash withdrawal is proportional to consumption or income. They also use steady-state
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cases defined by the two choices for the per-period utility (log or CRRA) and the estimator

(linear or MLE). In all four cases the parameter estimates for σκ and κ are sensitive to

specifying the discount factor. Using log per-period utilities, we find that linear and MLE

specifications yield quite different shapes for σκ(b). Where σκ(b) is increasing in b when the

MLE specification is used, a hump-shaped relationship emerges for the linear specification.

Using CRRA per-period utility, both linear and MLE specifications yield monotonically

increasing relationship between σκ and the discount factor. Despite these differences for

σκ(b), κ(b) has a similar shape for all four specifications.

Overall, we note that the estimates for κ̄ are large compared to the utility from consump-

tion. For example, with log utility and a typical consumption of e20,000, the utility of a

non-adopter is around 10 units while the estimate for κ̄ is close to 100 units.

That κ̄ increases with β2 could be driven by the observation that κ̄ enters as (1− β2)κ̄.

To illustrate this dependency, we plot (1 − β2)κ̄ in Figure 3. We see that this discounted

value of κ̄ decreases in β2 for all model specifications. Furthermore, the rate of decrease is

constant in β2 for log utility, but accelerates in β2 for CRRA utility.

Myopic consumers might perceive adoption as more costly. Adopting earlier would allow

the household to reap greater benefits in the future which become more important the larger

the discount factor β is. This is supported by the observation that the CRRA specifications

show a stronger increase of the discounted adoption cost with respect to β2.

7.2 Compensating variation

This subsection uses the structural estimates to calculate the one-time, per-household subsidy

that would lead to ATM card adoption. Our specific question is: How much do we have to

compensate Italian households in consumption so that they are indifferent between adopting

and not adopting an ATM card in the current period? We follow the approach of Cooley

and Hansen (1989) and Goolsbee and Klenow (2006) in obtaining a measure in monetary

units (here: euros).

The compensating consumption CV is defined implicitly as:

u(1, c1 + CV,m1(c))− κ̄+ βEW (zt+1|It = 1) = u(0, c0,m0(c)) + βEW (zt+1|It = 0) (21)

Here the left-hand side represents the expected future value of adopting if the household’s

consumption were increased by CV in the initial period and the right hand side represents

the future value of not adopting. Note that right hand side is v(0, zt)

optimization (with no discount factor) to find the Baumol-Tobin rule then a separate optimization into which
they enter the steady-state costs.

17



From the definition of v(z, 1) and v(z, 0), the equation can be re-written as

u(1, c1 + CV,m1(c1))− κ̄+ βEW (zt+1|It = 1) = v(0, zt)

u(1, c1,m1(c1))− κ̄+ βEW (zt+1|It = 1)− (1, u(c1,m1)− u(1, c1 + CV,m1)) = v(0, zt)

v(1, zt)− κ̄− u(1, c1,m1)− u(1, c1,m1)) = v(0, zt)

or,

v(1, zt)− κ̄− v(0, zt) = u(1, c1,m1)− u(1, c1 + CV,m1).

Here, cI = f c(I, zt) and mI = m(I, cI) Recall that It = 1 is the optimal choice if and only if

v(1, zt)− κ− σκϵ
1 > v(0, zt)− σκϵ

0; thus there exists a unique ϵ̄κ such that

v(1, zt)− κ̄− σκϵ̄κ = v(0, zt)

⇐⇒ v(1, zt)− κ̄− v(0, zt) = σκϵ̄κ

⇐⇒ v(1, zt)− κ̄− v(0, zt) = σκF
−1(pt)

where F−1 is the mapping from probabilities to differences in expected future values, induced

by (9) Thus CV is implicitly defined by

u(1, c1 + CV,m1)− u(1, c1,m1) = −σκF
−1(pt). (22)

To be able to derive meaningful results for variety of functional forms of u, we linearize u

and compute the compensating variation as

LCV =
−σκF

−1(pt)

u(1, c1, 0)
c1. (23)

For CRRA utilties, we thus obtain

LCV =
(1− α)σκF

−1(p)

(1 + γ)ω(c1−α − 1)
c. (24)

Our choice of linearizing u in this fashion is motivated by Goolsbee and Klenow (2006)

who show that logarithmic demand functions can lead to large estimates for the consumer

surplus of technological adoption when compared to e.g. linear demand functions. The

reason is that logarithmic demand functions are steep at small values and flat at large values.6

6This linearization strategy also overcomes the following challenge: Because u is monotonically increasing
in c, there exists at most one solution for CV (22). However, since u is not surjective, the real solution set
could be empty. For log utility, we can obtain exact real solutions of (22), that is a number in R. For CRRA
utilities, this inversion may lead to complex solutions. We thus rely on the first order approximation. To find
CV for a variety of functional forms of u, we could use a first order Taylor approximation at c1 to solve for CV.

18



Note that in the special case of a linear utility function, u = αc, CV = LCV = ασκF
−1(p).

Figure 4 illustrates the compensating variation measure in both cases for a convex utility

function.

We now provide numerical estimates of the compensating variation. First, the two lower

panels of Table 4 show the average value of LCV for different age groups, educational at-

tainment and regions. We also provide confidence intervals from a bootstrap procedure.

For log utility, point estimates for LCV range from e789 (highly educated) to e1907 (basic

education), when taken across all specifications. For CRRA utility, they range from e52

(highly educated) to e117 (basic education). In general, LCV increases with age, decreases

with educational attainment and is lowest in the North of Italy and highest in the South.

We also observe that confidence intervals are narrower for log utility than for CRRA utility.

In addition to these point estimates and their confidence intervals, we also illustrate how

LCV varies within the population. Violin plots, which are an extension of boxplots, are a

useful tool to visualize the distribution of LCV. The violinplots in Figures 5, 6 and 7 are

computed from the point estimates in Table 4. They show that the distribution of LCV is

qualitatively similar for all specifications. In particular, we observe that oldest age group

has a bimodal distribution of LCV, hinting at heterogeneity within this group.

Finally, we use the estimates of LCV from the MLE specification to compute the coun-

terfactual adoption rates in the case of subsidies of 10, 50, 100 and 200 Euros for CRRA

preferences. We assume that the household will adopt when the subsidy exceeds LCV. As

shown in Table 5, most households that are older, less educated and live in the South re-

quire subsidies exceeding e100 to adopt immediately. On the other hand, those with high

education require lower incentives. Overall, incentives of around e100 would be required to

get about half of the non-ATM card adopters to adopt the cards immediately.

8 Conclusion

This paper provides an application of discrete dynamic choice (DDC) models to the adoption

of financial innovation, contributing insights both to the literature on the identification of

DDC models and the technology adoption in the banking sector. Our method is applicable

to a range of additional financial adoption decisions.

Our paper uses several recent advances to modify the conditional choice simulation es-

timator of Hotz et al. (1994). In addition of exploiting the finite dependence property of

the technology adoption problem (Arcidiacono and Ellickson (2011)), we also implement the

That is we approximate u(1, c1+CV,m1) ≡ u(1, c1,m1)+(∂u/∂c)|c=c1CV. Since the derivative of the utility
function with respect to c is ∂u/∂c = (1+γ)ωc−α, approximately u(1, c+CV,m)−u(c,m, 1) ≡ (1+γ)ωc−αCV,

and thus CV ∼= −σκF
−1(p)cα

(1+γ)ω .

19



Euler equations in Arcidiacono and Miller (2011) and estimation of the discount parameter

from Abbring and Daljord (2020). In doing so, we reduce the computational complexity of

the DDC model. As a byproduct, we provide a closed form for the dynamic probit model

similar to the often-cited formula for the dynamic logit model.

A key feature of the economic environment is the return or utility function. That is

based on a shopping-time model of money demand, with two distinctive features. First,

it allows for a gradual diffusion of bank branches and ATM machines between 1989 and

2004, which enhanced the efficiency of money holding (and so reduced the ratio of money to

consumption) for both card-holders and non-card-holders. Second, it includes a parameter

(γ) that isolates the additional degree to which card-holders economized on money holding.

We estimate these features of money demand via the Euler equations in a first step, using

data from more than 52,000 household-year observations. We also estimate transitions for

consumption and wealth for both groups. We can therefore compute per-period utilities up

to adoption cost. The adoption cost is then estimated from the dynamic choice model.

While we find that the discounted adoption cost is larger for myopic households, we

provide empirical evidence that households have discount factors between 0.88 and 0.99,

hence are not myopic when deciding whether to adopt financial innovations. Furthermore, if

households have constant relative risk aversion, the data suggest that they are also somewhat

more myopic when compared to the case of log utility. This finding is important since many

dynamic decision problems take the discount factor, a measure of myopia, as given. It is also

consistent with the experimental finding of Andersen et al. (2008).

We compute the compensating variation, that is the amount of consumption that corre-

sponds to the disutility of adopting an ATM card which balances adoption costs against the

enhanced efficiency of money holding. In this context, the compensating variation could be

interpreted as the size of financial incentive or subsidy to encourage adoption of the financial

innovation. The average compensating variation is e90 (CRRA) respectively e1400 (log

utility). Older, less educated households in less prosperous regions would need to receive

larger financial incentives. These non-trivial costs could explain some of the slow uptake of

financial innovations, especially among the elderly, rural or less educated.
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Tables

Table 1: Descriptive Statistics

1989 1991 1993 1995 1998 2000 2002 2004

% with ATM card 15% 29% 34% 40% 49% 52% 56% 58%

Average:
Currency
holdings (m):
with card 741 527 398 421 374 349 341 352
without card 696 607 457 498 438 443 458 468

Non-durable
consumption (c):
with card 28395 26517 26430 27242 24463 25796 24941 25343
without card 20585 17757 17237 17299 15341 15405 15138 15899

Financial wealth (w):
with card 161293 190016 210880 203246 190581 194804 201501 208796
without card 115507 119261 126080 120216 111700 112830 110951 129692

Interest rate (r):
with card 8.3% 8.7% 9.0% 7.1% 3.2% 2.2% 1.6% 0.4%
without card 8.2% 8.5% 8.9% 7.0% 3.2% 2.2% 1.6% 0.4%

mr/c ratio:
with card 0.23 0.19 0.15 0.12 0.06 0.03 0.03 0.006
without card 0.32 0.33 0.26 0.22 0.10 0.07 0.05 0.013

Observations 8038 7951 7799 7844 6801 7641 7660 7639

Note: Currency holdings, consumption, and wealth are expressed in terms of 2004 euros.
The source is the Bank of Italy’s Survey of Household Income and Wealth.

24



Table 2: Intratemporal Euler equation for CRRA and log utilities

CRRA (13) log (14)
α ω γ̄ R2 γ̄ R2

γ constant 1.52(0.87) 6.68 (3.8) 0.23 (0.04) 0.35 0.27 (0.04) 0.78
γ varies 1.76(1.17) 7.70 (5.1) 0.23 (0.04) 0.35 0.27 (0.04) 0.78
across demographics p = 0.3 p = 0.3

Note: This table is derived from the fixed effects regression for the money demand
equations (13) and (14). The p-value reports the test that the interaction effects of
demographic variables and the ATM adoption status are significant. Standard errors in
parentheses. The Stata module -fese- gives standard errors for the fixed effects. The
reported standard errors are in parentheses and obtained from the delta method,

Table 3: Interest-Rate and Inflation Process

lnπt = a0 + a1 lnπt−1 + ϵπt

ln rt = b0 + b1 ln rt−1 + b2 lnπt + ϵrt

ϵπt ∼ IIN(0, σ2
π)

ϵrt ∼ IIN(0, σ2
r)

Parameter Estimate Standard Error
a0 0.182 0.256
a1 0.694 0.208
σ2
π 0.162 0.054

b0 -1.185 0.288
b1 0.826 0.127
b2 0.947 0.312
σ2
r 0.314 [0.261, 0.372 ]

Notes: Estimation uses annual observations from 1989–2010 on CPI inflation and regional
deposit rates. The interval in the standard error column for σr shows the second lowest and
second highest value among the twenty per-region regressions. Time t is measured in 2-year
steps.
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Table 4: Estimators and results

Linear specification MLE specification
Estimate 95% CI Estimate 95% CI

log
κ(1− beta2) 2.93 [2.12, 3.37] 2.88 [1.85, 3.35]
σκ 0.82 [0.62, 2.35] 0.86 [0.65, 2.54]
β2 0.97 [0.58, 1) 0.98 [0.5, 1)
CRRA
κ(1− beta2) 7.65 [4.2, 175.18] 7.65 [3.41, 251.87]
σκ 0.03 [0.03, 12.15] 0.03 [0.03, 18.07]
β2 0.78 [0.38, 1) 0.80 [0.34, 0.99]
LCV log
Age cohort
young 955 [598, 3003] 1003 [574, 3114]
middle 1243 [865, 4055] 1306 [878, 4272]
old 1741 [1208, 5337] 1828 [1243, 5714]
Education level
basic 1816 [1275, 5520] 1907 [1374, 5986]
intermediate 1316 [810, 3988] 1383 [880, 4403]
high 789 [428, 2787] 829 [400, 3009]
Region
North 1257 [810, 3918] 1320 [865, 4222]
Centre 1468 [955, 4989] 1542 [989, 5185]
South 1607 [1026, 4813] 1687 [1076, 5151]
LCV CRRA
Age cohort
young 62 [34, 2350] 63 [35, 2246]
middle 81 [40, 2592] 82 [41, 2477]
old 111 [58, 3593] 113 [61, 3434]
Education level
basic 116 [60, 3786] 117 [63, 3618]
intermediate 86 [48, 2689] 87 [50, 2570]
high 52 [23, 1938] 53 [24, 1852]
Region
North 82 [44, 2610] 83 [45, 2495]
Centre 96 [45, 2967] 97 [47, 2835]
South 102 [55, 3548] 103 [56, 3391]

Note: The linear and MLE specifications are found in equations (18) and (19), respectively.
The 95% confidence intervals (CI) are obtained from a parametric bootstrap procedure
suggested by Kasahara and Shimotsu (2008). We resample the covariance matrices of the
coefficient estimates for money demand function, the interest rate and inflation process and
the transition functions. LCV denotes the linearized compensating variation from equation
(23) or (24).
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Table 5: Counterfactual adoption by cohort and subsidy amount

e10 e20 e50 e100 e200
Age cohort
young 0.12 0.17 0.37 0.79 1
middle 0.07 0.1 0.22 0.66 0.99
old 0.01 0.02 0.05 0.34 0.99
Education level
basic 0.01 0.05 0.03 0.3 0.98
intermediate 0.03 0.23 0.17 0.63 1
high 0.17 0.45 0.86 1
Region
North 0.09 0.11 0.22 0.61 1
Centre 0.06 0.08 0.17 0.49 0.99
South 0.01 0.02 0.1 0.45 0.99

Note: LCV denotes the linearized compensating variation from equation (23) or (24) in the
text. Entries show the proportion of the sample for which the subsidy exceeds the
linearized compensating variation (LCV), so that adoption will occur. The values for LCV
are computed from the MLE estimator with CRRA utility.
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Figures

Figure 1: ATM Card Adoption, Money-Consumption and Wealth-Consumption Ratio
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Note: The Figure plots the money-consumption (mr/c) and wealth-consumption (w/c)
ratios over sequences of three waves of the SHIW for the adopters, denoted by (0,0,1) and
(0,1,1), the always adopters, denoted by (1,1,1), and the never-adopters, denoted by
(0,0,0). The plots apply to three time windows: 1991–1993–1995 (denoted W1),
1998–2000–2002 (denoted W2), and 2000–2002–2004 (denoted W3). The upper panel
shows the ratio mr/c. The lower panel shows the w/c ratio for the same households.
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Figure 2: Estimates of structural parameters
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Note: The charts show the estimates of the parameters σκ and κ obtained from minimizing
the linear least squares conditions (18) or the maximizing the likelihood functions (19)
when β is fixed at the value on the horizontal axis. Log and CRRA indicate the functional
form of the per-period utility function.

Figure 3: Estimates of discounted adoption cost
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Note: The charts show the estimates of κ(1− β) obtained from minimizing the linear least
squares conditions (18) or the maximizing the likelihood functions (19) when β is fixed.
Log and CRRA indicate the functional form of the per-period utility function.
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Figure 4: Consumption, utility and compensating variation
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Note: The chart shows how to graphically obtain CV and LCV for a utility shock at a level
of consumption c1, see Goolsbee and Klenow (2006) for further details. Consumption is
plotted on the x-axis and the y-axis shows the level of utility corresponding to a certain
level of consumption. If utility changes by the amount x represented by the short vertical
line, CV represents the solution to u(c1 + CV ) = u(c1) + x and LCV = x

u(c1)
c1 is the

proportional, or linear, compensation.
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Figure 5: Estimates of LCV by age cohort

Note: The charts show the distribution of LCV by age cohort, using the parameters
obtained from minimizing the linear least squares conditions (18) or the maximizing the
likelihood functions (19). Log and CRRA indicate the functional form of the per-period
utility function.

Figure 6: Estimates of LCV by education

Note: The charts show the distribution of LCV by education level, using the parameters
obtained from minimizing the linear least squares conditions (18) or the maximizing the
likelihood functions (19). Log and CRRA indicate the functional form of the per-period
utility function.
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Figure 7: Estimates of LCV by region

Note: The charts show the distribution of LCV by region, using the parameters obtained
from minimizing the linear least squares conditions corresponding to (18) or the
maximizing the likelihood functions corresponding to (19). Log and CRRA indicate the
functional form of the per-period utility function.
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