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Abstract

Much research studies US inflation history with a trend-cycle model with unobserved
components, where the trend may be viewed as the Fed’s evolving inflation target or long-
horizon expected inflation. We provide a novel way to measure the slowly evolving trend
and the cycle (or inflation gap), by combining inflation predictions from the Survey of
Professional Forecasters (SPF) with realized inflation. The SPF forecasts may be treated
either as rational expectations (RE) or updating according to a sticky information (SI) law
of motion. We estimate RE and SI state space models with stochastic volatility on samples
of CPI and GNP/GDP deflator inflation and the associated SPF inflation predictions using
a particle Metropolis-Markov chain Monte Carlo sampler. The trend converges to 2% and
its volatility declines over time, two tendencies largely complete by the late 1990s.
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1. Introduction

For the past thirty years the unobserved-components (UC) model has been an infor-

mative lens through which economists have viewed US inflation dynamics. That statistical

model decomposes inflation into permanent and transitory components. The permanent

component or trend usually (and in this paper) is identified with the Beveridge and Nelson

(1981) decomposition, meaning that it is a random walk. This decomposition has been

widely adopted in forecasting inflation. For example, Stock and Watson (2007, 2010) use

it to isolate changes in the variances of the components and hence in the overall persis-

tence and forecastability of inflation over time. Faust and Wright (2013), in their review

of inflation forecasting, list the many studies that feature a slowly evolving trend.

The Beveridge-Nelson (BN) decomposition also sheds light on inflation history. For

example, Cogley and Sargent (2015) use the model to identify inflation moderations in a

long span of annual data. A key feature of this model is that the trend component serves

as a measure of long-horizon inflation expectations, an indicator of the Fed’s credibility as

well as a constraint on the effect of policy.

We use surveys of professional forecasts to measure the two components of inflation.

A simple example illustrates the idea. First, suppose inflation is the sum of a random-walk

trend, τt, and an inflation gap, εt, that is white noise. Thus, τt also is the expectation of

future inflation. Second, suppose professional forecasters report their rational expectations.

Thus, their h-step-ahead forecasts directly provide an estimate of τt, while εt can be found

by subtracting that trend estimate from realized inflation. We then show how to extend

this idea to allow for a persistent inflation gap, to incorporate stochastic volatility (SV)

into the innovations of both components, to include information from professional forecasts

at multiple horizons, and to integrate sticky forecasts into this setting.

As this simple example shows, this approach requires a view on the connection be-

tween unobservable, h-step-ahead, rational-expectations (RE) forecasts of inflation, de-

noted Etπt+h, and the mean, reported inflation forecasts of professional forecasters, de-

noted Ftπt+h. We obtain these inflation forecasts from the Survey of Professional Fore-

casters (SPF).

We consider two possibilities. One way to extract information from the SPF is to
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assume that its mean h-step ahead inflation forecast coincides with the h-step ahead pre-

diction made by the UC model under its information set. Second, we assume professional

forecasters do not react to new information as prescribed by RE. Instead, new information

produces less than a full response by professional forecasters. Thus, professional forecasts

are sticky and can be modeled using the sticky information (SI) framework of Mankiw and

Reis (2002).

The SI model is motivated by the considerable evidence that panels of professional

forecasts are not consistent with full-information RE but rather exhibit bias. How can pro-

fessional forecasts be useful if they are biased? Precisely because the pattern of forecast

errors is systematic, these surveys provide evidence about the underling expectations of

the forecasters. Coibion and Gorodnichenko (2012, 2015) use the SI model to link reported

forecasts to the actual conditional expectations of professional forecasters. The SI descrip-

tion of forecasts also is of interest because it has been widely used to close macroeconomic

models, for example in studies of the New Keynesian Phillips curve.

We develop procedures to connect mean, reported forecasts to the UC model under

either the RE or SI assumption about professional forecasts. In the latter case we estimate

the parameter describing stickiness along with those of the UC model. We find that

inflation-gap persistence is quite low. Whether inflation is measured by the CPI or by the

GDP deflator, the trend converges to near 2% and its volatility declines over time, two

tendencies largely complete by the late 1990s. Information stickiness also can be identified

and is especially important to describe the 1970s.

Section 2 outlines the unobserved components model and its implications for forecasts

under RE and SI respectively. These models of reported forecasts lead to sets of observation

equations to be used in extracting the components of inflation. Section 3 briefly describes

related research. Section 4 describes the Bayesian sequential Monte Carlo methods we

adopt. A reader not interested in the estimator per se might skip this section, while one

specifically interested in the estimator will find still more detail in the online appendix.

Section 5 gives data sources and priors. Section 6 contains the findings.
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2. The RE- and SI-SPF State Space Models

The state-space models depend on the Stock and Watson (2007, 2010) unobserved

components (UC) model to generate realized inflation, πt. Their model equates πt to

trend inflation, τt, plus gap inflation, εt. Trend inflation is a random walk while εt is a

first-order autoregression with AR1 parameter ρ ∈
(
−1, 1

)
. Innovations to τt and εt are

independent, but are subject to stochastic volatility (SV) that in each case evolves as a

(log squared) random walk. Thus, the UC model is:

πt = τt + εt, (1)

τt = τt−1 + ξη,t−1ηt, ηt ∼ N
(
0, 1
)
, (2)

εt = ρεt−1 + ξυ,t−1υt, υt ∼ N
(
0, 1
)
, (3)

ln ξ2
η,t = ln ξ2

η,t−1 + σηφη,t, φη,t ∼ N
(
0, 1
)
, (4)

ln ξ2
υ,t = ln ξ2

υ,t−1 + συφυ,t, φυ,t ∼ N
(
0, 1
)
. (5)

In sum, τt is the slowly-evolving trend in inflation while εt is the inflation gap, which

is stationary, but can be persistent. Their innovations are ηt and υt, respectively. These

two innovations experience SV depicted with independent log random walks in ξ2
η,t and

ξ2
υ,t. We assume the innovations ηt, υt, φη,t, and φυ,t form a vector of martingale difference

sequences on the filtration Ft−1, given initial conditions τ0, ε0, ξη,0, and ξυ,0, where t = 0,

1, 2, . . . , ∞.

This UC model predicts the long-run forecast of πt is the Beveridge-Nelson (1981)

trend. The long-run forecast is h-step ahead expected inflation, given date t information,

at the infinite horizon, limh→∞Etπt+h = τt. Watson (1986) and Morley, Nelson, and Zivot

(2004) show that this result follows from the fact that τt evolves as a random walk. The

prediction is robust to SV in the innovations, ηt and υt, to τt and εt as long as the SVs are

‘predetermined’ or independent of these innovations. We refer to the UC model (1)–(5) as

the BNSW model in recognition of these classic contributions.

2.1. Rational Expectations

This section describes how to learn about these components using realized inflation, πt,

and the mean h-quarter ahead inflation predictions from the SPF. Denote these predictions
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πSPFt,h at horizon h. Under rational expectations (RE), we assume πSPFt,h equals the h-

quarter ahead RE inflation forecast, Etπt+h, plus a classical measurement error, σψ,hψt,h,

where ψt,h ∼ N(0, 1).

Unbiasedness of professional forecasts constitutes indirect evidence in favor of this

assumption. Keane and Runkle (1990) give early evidence of the unbiasedness of price

forecasts using disaggregated data from the Livingston Survey. Ang, Bekaert, and Wei

(2007) describe an inflation-forecasting tournament in which the median professional fore-

cast is the best predictor of annual inflation. Gil-Alana, Moreno, and Pérez de Gracia

(2012) find similarly favorable results for survey-based expectations of quarterly inflation

and, specifically, the mean CPI inflation forecasts from the SPF. Croushore (2010) demon-

strates the general lack of bias in the SPF forecasts using real-time measures of target

variables. Overall, as Faust and Wright (2013, p. 5) note, “Subjective forecasts of in-

flation seem to outperform model-based forecasts in certain dimensions, often by a wide

margin.” Winning tournaments based on mean-squared error, of course, does not imply

unbiasedness, but it at least rules out systematic biases, for otherwise a time-series model

would incorporate those and improve upon professional forecasts. To quote Faust and

Wright again (p. 21), “A useful way of assessing models [thus] is by their ability to match

survey measures of inflation expectations.”

The RE assumption gives us an easy way to link πSPFt,h to the hidden components

of the BNSW model. The BNSW model predicts Etπt+h = τt + ρhεt. Substituting this

expression and an implication of equation (1), τt = πt− εt, into πSPFt,h = Etπt+h+σψ,hψt,h

leads to the RE-SPF observation equation

ΠSPF
t,h ≡ πSPFt,h − πt = (ρh − 1)εt + σψ,hψh,t, (6)

for h = 1, . . . ,H. Trend inflation is annihilated in the observation equation (6) because

πSPFt,h and πt share the permanent component of the BNSW model in common. We inter-

pret ΠSPF
t as the accumulated growth of inflation h-quarters ahead that is anticipated by

the SPF on average at quarter t.

The RE-SPF state space model consists of the AR(1) of εt, the random walk of

ln ξ2
υ,t, and H RE-SPF observation equations. The RE-SPF observation equation (6) is
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formed into a stack from h = 1, . . . ,H, where the vector of dependent variables ΠSPF
t =[

ΠSPF
t,1 . . .ΠSPF

t,H
]′

. The system of observation equations constitutes a RE term structure of

inflation growth anticipated by the mean of the SPF. The RE term structure is explained

by a single factor and classical measurement errors. The single factor is gap inflation, εt.

Thus, its AR(1) is a state equation. This is equation (3) of the BNSW model. Since εt

is affected by SV, ξυ,t−1, through its impact on the innovation, υt, to gap inflation, the

random walk of its SV, ln ξ2
υ,t is the second state equation. This is equation (5). The top

of table 1 and section A.1.a of the appendix summarize the RE-SPF state space model.

2.2 Sticky Information

Notwithstanding citations to earlier research showing professional forecasts are unbi-

ased, a number of recent, statistical studies have found forecast errors contain predictable

components. Several of these studies argue that finding a specific pattern of predictability

grounded in mean forecast revisions leads to an alternative, parametric model of observed,

mean forecasts.

We work with the sticky-information (SI) model introduced by Mankiw and Reis

(2002). The SI model is applied to professional forecasters by Mankiw, Reis, and Wolfers

(2004) and Coibion and Gorodnichenko (2012, 2015). Suppose SI forecasters update their

information with probability 1 − λ, λ ∈ (0, 1). In this case, λ measures the degree of

stickiness in information. Let Ftπt+h denote the SI forecasts, which is the cross-forecaster

mean forecast at quarter t for inflation h-quarters ahead. Coibion and Gorodnichenko

(2015) show this average forecast is a weighted average of the previous period’s mean,

reported forecast and the h-quarter ahead RE inflation forecast:

Ftπt+h = λFt−1πt+h + (1− λ)Etπt+h, (7)

for h = 1, . . . ,H. We also note 1/(1−λ) is the frequency at which SI forecasts are updated

on average.

The SI-BNSW state space model is built with the SI law of motion (7), the BNSW

model, and an assumption that connects πSPFt,h to Ftπt+h. The assumption drops the RE

inflation forecast for the SI inflation forecast in πSPFt,h = Ftπt+h+σψ,hψt,h. Combining the

SI law of motion (7) and the RE inflation forecast produced by the BNSW model gives
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(1 − λL)Ftπt+h = (1 − λ)[τt + ρhεt]. Once again, eliminate τt using equation (1) of the

BNSW model to find (1 − λL)Ftπt+h = (1 − λ)[πt + (ρh − 1)εt]. Next, rearranging the

previous expression and noticing the BNSW model implies ∆πt = ξη,t−1ηt + (εt − εt−1)

produces the SI-SPF observation equation:

ΠSPF
t,h = λΠSPF

t−1,h + [(1− λ)ρh − 1]εt + λεt−1 − λξη,t−1ηt + σψ,hψt,h − λσψ,hψt−1,h, (8)

where πSPFt,h = Ftπt+h + σψ,hψt,h, is used to eliminate the SI inflation forecasts Ftπt+h

and Ft−1πt+h.

Compared with the RE-SPF observation equation (6), SI imposes costs on inflation

forecast updating for the average SPF participant that appear as AR(1), MA(1), and

SV elements in the SI-SPF observation equation (8). The AR(1) component is the pre-

determined explanatory variable, ΠSPF
t−1,h ≡ πSPFt−1,h − πt−1. There are also MA(1)s in gap

inflation, [(1− λ)ρh − 1](1 + λ[(1− λ)ρh − 1]−1L)εt, and the measurement error, σψ,h(1−

λL)ψt,h. The AR(1) and MA(1) terms reflect the sluggishness that SI inflation forecast

updating creates in the responses of πSPFt,h to shocks that cause it to deviate from πt.

Lagged SV enters the SI-SPF observation equation (8) for the same reason. The SI-SPF

observation equation (8) also has a forward-looking element, (1 − λ)ρhεt, tied to the RE

inflation forecast produced by our BNSW model. The SI restrictions leave the RE-SPF

observation equation (6) nested by the SI-SPF observation equation (8). The nesting relies

only on λ = 0.

The SI-SPF state space model begins by creating a stack of the SI-SPF observation

equation (8) from h = 1, . . . ,H, where the dependent variable is ΠSPF
t . However, the

SI-term structure of ΠSPF
t is driven by several state variables. Three of the states are εt,

ξη,t, and ξυ,t. Thus, equations (3)–(5), which are the AR(1) of gap inflation and the SVs

of trend and gap inflation, are part of the system of state equations of the SI-SPF state

space model. Part of this system of state equations consists of laws of motion for ψ1,t,

ψ2,t, and ψ3,t, to capture the impact of the MA(1) of these measurement errors on the

term structure of average SPF anticipated h-step ahead accumulated inflation growth. The

bottom panel of table 1 and section A.1.b of the appendix give details about the SI-SPF

state space model.
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3. Related Research

The BNSW decomposition has been fruitful in studies of several aspects of inflation

dynamics. Ireland (2007) estimates the Federal Reserve’s implicit, time-varying inflation

target with a Beveridge-Nelson trend. Cogley and Sbordone (2008) use a similar, stochastic

trend around which to estimate a New Keynesian Phillips curve while Ascari and Sbordone

(2013) survey this approach and outline its implications for monetary policy. Stock and

Watson (2007) interpret the changing persistence and forecastability of US inflation with

the UC model with changes in shock variances. Cogley, Primiceri, and Sargent (2010) use

a related model to identify changes in the persistence of the inflation gap, εt. Stock and

Watson (2016) extend the UC model with stochastic volatility to model outliers and to

jointly track the dynamics of the components of the PCE deflator.

Estimation and forecasting with the UC model require one to use the Kalman filter

to extract the unobserved components. The filter is applied beginning with orthogonality

assumptions (for example, a zero covariance between ηt and εt) and a set of covariates in

observation equations. Examples of studies that apply the Kalman filter to this model in-

clude Stock and Watson (2007), Shephard (2013), Cogley and Sargent (2015), and Mertens

(2016). Mertens documents the roles of a wide range of covariates, whereas we outsource

much of the work to the participants in the SPF.

Our use of forecast surveys means that our study can be thought of as a sequel to that

of Kozicki and Tinsley (2012), who estimate the parameters of a UC model of CPI inflation

using actual inflation and the long span of observations from the Livingston survey, allowing

for higher-order dynamics to fit seasonally unadjusted data, and under the assumption

that forecasts are conditional expectations. They provide a detailed discussion of the

interpretation and need for a shifting endpoint, τt, for inflation forecasts. Henzel (2013)

similarly combines SPF forecasts with the UC model to estimate inflation expectations.

He also contrasts the speed of adjustment (or Kalman gain) in SPF forecasts with that

estimated for the UC model alone. Jain (2019) applies a state-space model with a persistent

but stationary unobserved component to the forecasts of individual forecasters in the SPF.

She uses the properties of forecast revisions to deduce the persistence implied in these

forecasters’ views of the underlying state variables and finds that this persistence has
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declined over time for many forecasters.

We use the SPF with multiple horizons and quarterly observations but also allowing

for SV, a feature Grassi and Proietti (2010) and Creal (2012) find to be important for

modelling US inflation using the BNSW model. They find that the volatility of CPI

inflation has increased recently, with the increased volatility attributed to the transitory

rather than the permanent component. We also consider the possibility that forecasts

are sticky. This extension potentially reconciles the method with the bias in mean SPF

forecasts yet still allows us to use those forecasts to estimate the UC model and measure

inflation expectations. We work with the SI model because of its tractability in this

application and also because it has been used to close and estimate macroeconomic models,

not just to describe forecasts. For example, Kiley (2007), and Coibion (2010) test versions

of the SI model applied to price-setting and hence to aggregate inflation. Mertens and

Nason (2019) study a more complex UC model with time-variation in gap-persistence ρ

and stickiness λ. They detect and interpret variation in both parameters.

4. A Particle MH-MCMC Algorithm

We estimate the RE- and SI-BNSW state space models using Bayesian sequential

Monte Carlo methods. These methods consist of a PMH-MCMC (particle Metropolis-

Hastings, Markov chain Monte Carlo), which wraps a random walk MH-MCMC around

a RB-APF (Rao-Blackwellized auxilary particle filter). The RB-APF is the source of

estimates of the state variables of the state space models while the random walk MH-

MCMC produces posterior distributions of the fixed parameters. The RB procedure and

APF are discussed by Chen and Liu (2000), Creal (2012), Shephard (2013), and Pitt and

Shephard (1999, 2001). We implement a PMH-MCMC algorithm that relies on results in

Andrieu, Doucet, and Holenstein (2010) and the advice of Pitt, dos Santos Silva, Giordani,

and Kohn (2012), Doucet, Pitt, Deligiannidis, and Kohn (2015), and Martino, Elvira, and

Camps-Valls (2018). Sections A.2 and A.3 of the appendix discuss in detail our Bayesian

framework for estimating the state space models.

4.1 The Auxiliary Particle Filter

Pitt and Shephard (1999, 2001) develop the APF to achieve greater efficiency com-
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pared with a bootstrap particle filter. A canonical bootstrap particle filter is a sequential

importance sampler with a resampling step. Let {S(j)
t−1|t−1}

J
j=1 denote J date t−1 filtered

particles of the state vector of an arbitrary state space model. The resampling step draws

J particles from {S(j)
t−1|t−1}

J
j=1 with replacement. These draws rely on J particle weights

that are the normalized likelihood particles of the state space model. Thus, this step

copies into the ensemble of resampled states, {S̃(j)
t−1|t−1}

J
j=1, the particles of {S(j)

t−1|t−1}
J
j=1

associated with the largest likelihoods. Resampling aims to rule out all the weight of the

normalized likelihoods falling on a few or even one particle. As Creal (2012) notes, this

solves the problem of the degeneracy of particles that are used to estimate states at future

dates. Finally, using the state dynamics, the stream {S̃(j)
t−1|t−1}

J
j=1 is propagated into date

t, which yields {S(j)
t|t }

J
j=1.

The efficiency gains of the APF come in part from it reversing the order of the re-

sampling and propagation steps. Since the APF is a propagation-resampling algorithm,

the particle weights used to resample the date t− 1 states are built on sample information

available at date t. This results in two ensembles of particles. If the stream of resampled

particles, {S̃(j)
t−1|t−1}

J
j=1 produce a distribution of likelihoods with fatter tails compared

with the likelihoods conditioned on the prior ensemble of particles, {S(j)
t−1|t−1}

J
j=1 , the

APF is more efficient; see Johansen and Doucet (2008) and Creal (2012).

4.2 Rao-Blackwellization and the APF

Rao-Blackwellization boosts the efficiency of the APF when applied to a nonlinear

state space model. The improvement in efficiency rests on a state space model having

states that are linear and Gaussian conditional on its nonlinear states. For example, the

top panel of table 1 shows that gap inflation is the lone conditionally linear and Gaussian

state, SRE,t, of the RE-SPF state space model. We label this state space model MRE .

Its single nonlinear state is the SV of gap inflation, ξυt as pointed out in table 1. Since

εt evolves according to the AR(1) of equation (3), it produces estimates of SRE,t that are

are linear and Gaussian conditional on a lag of gap inflation and on realizations of ξυ,t−1.

Realizations of ξυ,t are retrieved from its random walk, which is equation (5).

These states are also part of the SI-SPF state space model that is referred to as

MSI . However, as discussed in the lower panel of table 1, MSI has more elements in its
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conditional linear and Gaussian state vector, SSI,t, than gap inflation. Six of the additional

states are linear in the measurement errors ψ1,t, ψ2,t, and ψ3,t. Also, included in SSI,t is

the fixed SI parameter, λ, that is in effect a ‘pseudo’ state. Table 1 describes a system

of conditional linear and Gaussian state equations for MSI , given realizations of ξυ,t−1.

Similarly, forecasts of Πt,h are produced by the linear and Gaussian observation equation

(8) conditional on a lag of the second nonlinear state of MSI , ξη,t.

A Rao-Blackwellized APF applied to Mm employs the Kalman filter to construct an

analytic distribution of Sm,t, m = RE, SI. Since these state space models are linear and

Gaussian, running the Kalman filter produces Sm,t ∼ N(S(j)
m,t|t, Σ

(j)
m,t|t), where S(j)

m,t|t is

the jth particle of the filtered state(s) at date t and its mean square error (MSE) is Σ
(j)
m,t|t

for j = 1, . . . ,J . Drawing estimates of Sm,t analytically makes the Rao-Blackwellized

(RB-)APF more efficient; see Chen and Liu (2000), Creal (2012), and Särkkä (2013). The

distribution of ξυ,t is approximated by simulation in MRE . For MSI , simulation is also

used to approximate the distribution of ξη,t. Section A.2.a of the appendix has more about

RB of the APF.

We build a RB-APF by combining algorithm 3 of Creal (2012) and algorithm 1 of

Pitt, dos Santos Silva, Giordani, and Kohn (2012). We sketch the RB-APF as it is applied

toMRE in the rest of this section while leaving details about implementing the algorithm

for MSI to section A.2.b of the appendix.

Initializing the RB-APF forMRE relies on priors for SRE,0 and ln ξ2
υ,0 to draw J par-

ticles at date 0 and on fixing the second stage weight $
(j)
SI,0 = J−1 for j = 1, . . . ,J . Given

these initial conditions, ΠSPF
1 , and the parameter vector of MRE , ΘRE , at date 1 engage

the Kalman filter prediction formulas to compute the stream of first-stage predictive likeli-

hoods,
{

exp{l(j)RE,1}
}J
j=1

and jth first-stage weight$
(j)
RE,0|1 = ω

(j)
RE,0|1/

∑J
j=1 ω

(j)
RE,0|1, which

incorporates information in ΠSPF
1 , where ω

(j)
RE,0|1 = ($

(j)
RE,0/

∑J
j=1$

(j)
RE,0) exp{l(j)RE,1}. We

input {$(j)
SI,0|1}

J
j=1 into a stratified resampling (with replacement) scheme described by

Hol, Schön, and Gustafsson (2006) and Li, Bolic, and Djuric (2015) to obtain indexes

that applied to {S(j)
RE,0|0, Σ

(j)
RE,0|0, ξ

(j)
η,0, }Jj=1 yield resampled linear and nonlinear states,

{S̃(j)
RE,0|0, Σ̃

(j)
RE,0|0, ξ̃

(j)
υ,0, }Jj=1. In a second stage, pass {S̃(j)

RE,0|0, , Σ̃
(j)
RE,0|0, ξ̃

(j)
υ,0, }Jj=1, through

the Kalman filter predictive and updating formulas to create {S(j)
RE,1|1, Σ

(j)
RE,1|1}

J
j=1. These
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operations also produce the second-stage predictive log likelihood, l
(j)
RE,1 that is used to

update the second-stage weights $
(j)
RE,1 = ω

(j)
RE,1/

∑J
j=1 ω

(j)
RE,1 for j = 1, . . . ,J , where

ω
(j)
RE,1 = exp{l(j)RE,1 − l̃

(j)
RE,1}, and l̃

(j)
RE,1 is resampled using {$(j)

RE,0|1}
J
j=1. The last step

propagates the SV of gap inflation, {ln[ξ
(j)
υ,1]2}Jj=1, by entering {ln[ξ̃

(j)
υ,0]2}Jj=1 and J draws

from φν,1 ∼ N(0, 1) into the random walk (5).

The last three steps gives us priors and second-stage weights to operate the RB-APF

at date 2. Subsequently, we run the RB-APF at dates t = 3, . . . , T . Operating the RB-

APF on the entire sample creates
{
{S(j)

RE,t|t, Σ
(j)
RE,t|t, ξ

(j)
υ,t}Jj=1

}T
t=1

and
{
{$(j)

RE,t}
J
j=1

}T
t=1

.

These particle streams produce the filtered means SRE,t|t =
∑J
j=1$

(j)
RE,tS

(j)
RE,t|t, ΣRE,t|t =∑J

j=1$
(j)
RE,tΣ

(j)
RE,t|t, and ξυ,t =

∑J
j=1$

(j)
RE,tξ

(j)
υ,t .

The RB-APF algorithm also provides an estimate of the likelihood ofMRE . Pitt, dos

Santos Silva, Giordani, and Kohn (2012) recommend estimating the likelihood at date t

with:

P(ΠSPF
t |ΠSPF

1:t−1; MRE , ΘRE) =

(
1

J

J∑
j=1

ω
(j)
RE,t

) J∑
j=1

ω
(j)
RE,t−1|t. (9)

We generate P(ΠSPF
t |ΠSPF

1:t−1; MRE , ΘRE) from the start to the end of the sample using

equation (9).

4.3 A Random Walk PMH-MCMC

A necessary input into a PMH-MCMC sampler is an unbiased estimate of the like-

lihood. Equation (9) supplies unbiased estimates of P(ΠSPF
t |ΠSPF

1:t−1; Mm, Θm) for m =

RE, SI at t = 1, . . . , T . However, this leaves open the question of whether errors in

these estimates of the likelihood impair posterior distributions of MRE and MSI . We

depend on Andrieu, Doucet, and Holenstein (2010) for proof the posterior distribution

P(Sm,t, ξυ,t, Θm|ΠSPF
1:T , Mm) is unaffected by estimation error that results from com-

puting the likelihood (9) assuming this estimate is unbiased. They also lay out the con-

ditions under which the RB-APF produces unbiased estimates of L(ΠSPF
1:T |Θm, Mm) =

exp
[∑T

t=1 lnP(ΠSPF
t |ΠSPF

1:t−1; Mm, Θm)
]

for m = RE, SI; also see Creal (2012) and Pitt,

et al (2012).

These results tells us to generate posterior distributions of ΘRE and ΘSI by placing the

RB-APF inside a random walk MH-MCMC simulator. Our PMH-MCMC sampler employs
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a multivariate random walk proposal with standard normal innovations. The scale matrix

of the random walk proposal is calculated using the robust adaptive Metropolis (RAM)

algorithm of Vihola (2012).

We start the PMH-MCMC sampler with an initial draw, Θ̂m,0, of the parameter vector

of Mm, m = RE, SI. At the initial step of the PMH-MCMC sampler, the multivariate

MH random walk is Θm,1 = Θ̂m,0 + Γ
1/2
Θ,m,0ϑm,1, ϑm,1 ∼ N(0dm×1, Idm), where Γ

1/2
Θm,0

is

the Cholesky decomposition of ΓΘm,0, which is the initial covariance matrix of Θm, and

dm = dim
(

Θm

)
. This covariance matrix is drawn from an inverse Wishart distribution,

ΓΘm,0 =
(

2.4/
√
dm

)2

ΓΘm , where ΓΘm ∼ IW(100.0, 0.01Idm). Next, set the counter r

to zero and draw a uniform random uniform random variable ν1 ∼ U(0, 1) variable to

evaluate the MH criterion:

α1 = min

{
L̂(ΠSPF

1:T |Θm,1, Mm)q(Θm,0,Θm,1)P(Θm,1)

L̂(ΠSPF
1:T |Θm,0, Mm)q(Θm,1,Θm,0)P(Θm,0)

, 1

}
,

where the RB-APF is the source of L̂(ΠSPF
1:T |Θm,1,Mm), q(·, ·) is the kernel of the proposal

distribution, and P(Θm,1) and P(Θ̂m,0) are priors conditional on Θm,1 and Θ̂m,1. If

ν1 ≤ α1, set Θ̂m,1 = Θm,1 and r = 1. Otherwise, Θ̂m,1 = Θ̂m,0 and r = 0. When the

support of the proposal and the target differ, the kernel of the proposal distribution is not

symmetric. In this case, we calculate q(·, ·) as Lindström (2017) suggests. Section A.2.d

of the appendix has further details.

The PMH-MCMC sampler repeats this process for k = 2, . . . ,K with one exception.

The scale or Cholesky matrix of the covariance matrix of Θm in the multivariate MH

random walk:

Θm,k = Θ̂m,k−1 + Γ
1/2
Θ,m,k−1ϑm,k, ϑm,k ∼ N(0dm×1, Idm), (10)

is computed using the RAM updating algorithm

ΓΘ,m,k = Γ
1/2
Θ,m,k−1Γ

1/2 ′

Θ,m,k−1+Γ
1/2
Θ,m,k−1

(
min((1, dmk

ι)×(αk−α∗)
ϑkϑk′

||ϑk||2

)
Γ

1/2 ‘
Θ,m,k−1, (11)

where ι is the step size to adapt new proposals and α∗ is the desired acceptance rate of

the PMH-MCMC. We follow the advice of Vihola (2012) to set ι = −0.65. Our goal is
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to achieve the optimal acceptance rate of a MH-MCMC with a multivariate target, which

requires α∗ = 0.234. Although neither the empirical distribution (i.e., outer product) of

Θm nor the Hessian of Mm is used to estimate ΓΘ,m,k, it is guaranteed to be positive

definite and is a function of α∗. Section A.3 of the appendix has more information about

our implementation of the RAM algorithm while section A.2.d does the same for the MH-

MCMC sampler.

4.4 Choosing the Number of Particles and MCMC Steps

The PMH-MCMC encloses the RB-APF inside the MH-MCMC sampler. We need to

choose J to generate the likelihood using the RB-APF at every one of the K steps of the

MH-MCMC to produce the posterior distributions of the states and parameters. This can

be computationally costly. We adopt several strategies to reduce these costs.

Our template for setting J is motivated by theory developed by Pitt et al (2012)

and a stopping rule suggested by Doucet, Pitt, Deligiannidis, and Kohn (2015). Pitt et

al build a theory to find the optimal number of particles by equating the error variance

of the estimated log likelihood to the theoretical optimum. The problem for us is their

theory relies on assuming the proposal of the PMH-MCMC is ideal (i.e., is an exact match

for the posterior distribution). Moving off of this assumption lets Doucet et al produce a

theoretical upper bound on computing time. Doucet et al ground a rule for choosing J

that trades-off computing time and the (error) variance of the estimated log likelihood of

a particle filter. The rule says to stop increasing J if the error variance of the estimated

log likelihood σ̂2
L,m is 1.22.

A problem is an estimate of the posterior mean, Θm, is needed to operate the stopping

rule. Pitt et al propose to estimate Θm by running the PMH-MCMC on a large J and

a small number of MH-MCMC steps. Our approach inputs J = 100, 000 particles into

the RB-APF while running the MH-MCMC for 30,000 steps. The first 10,000 steps serves

as a burn-in sample that is discarded. The remaining 20,000 steps yield an estimate of

the posterior mean, Θm for Mm, m = RE, SI, on the SPF-CPI and SPF-PGNP/PGDP

inflation samples. The distributed parallel PMH-MCMC algorithm of Martino, Elvira, and

Camps-Valls (2018) is used in this case. Details are found in section A.3 of the appendix.

We run the RB-APF beginning at J = 26 particles to estimate L̂(ΠSPF
1:T |Θm, Mm),
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m = RE, SI. If σ̂2
L,m ≤ 1.22, stop. Otherwise, increase J by one particle and repeat.

On the CPI-SPF sample, the stopping rule yields J = 50 for MRE and J = 112 for

MSI . The numbers of particles increase to J = 63 and 171 for MRE and MSI on the

PGNP/PGDP-SPF sample.

The PMH-MCMC is run on a single thread for MRE and MSI using these values of

J . On a single thread, the PMH-MCMC is run on 2,250,000 steps. The first third of these

steps are discarded in a burn-in. The remaining 1,500,000 draws are employed to assess

the convergence of the posterior distributions.

There is substantial correlation in the posterior distributions of ΘRE and ΘSI onMRE

and MSI and the two samples. We engage the statistically efficient algorithm of Owen

(2017) to thin these posterior distributions. His algorithm trades-off the cost of updating

the PMH-MCMC against the cost of obtaining an estimate of the likelihood. Since the

maximal first-order autocorrelation coefficient is 0.963 across the posterior distributions of

ΘRE and ΘSI and we assume the cost of updating the PMH-MCMC sampler is 33 percent

of the cost of estimating the likelihood, Owen’s algorithm produces a factor of 12 to thin

the posterior distributions leaving 125,000 draws in the posterior. The thinned posterior

distributions have a maximal first-order auto-correlation coefficient less than 0.642. The

next sections reports estimates of MRE and MSI on the SPF-CPI inflation and SPF-

PGDP/GNP inflation samples using these thinned posterior distributions.

5. Estimating the RE- and SI-BNSW State Space Models

This section describes the CPI-SPF and PGNP/PGDP-SPF samples and the prior

distributions.

5.1 The Data

The RE- and SI-BNSW state space models are estimated on two samples. One sample

consists of realized CPI inflation and associated average SPF inflation predictions. The

CPI-SPF samples runs from 1981Q4 to 2018Q4. The other sample is realized GNP/GDP

deflator inflation and related average SPF inflation predictions. This sample begins in

1969Q1 and ends with 2018Q4. In both samples, the SPF’s fifth definition of real time

inflation is realized inflation, πt. The average SPF predictions are a 0-quarter ahead
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nowcast and 1-, . . . , 4-quarter ahead horizons. The nowcast is dropped because of potential

timing conflicts with πt. We also do not use πSPFt,4 in the dependent variable of the RE-

and SI-BNSW state space models. The reason is ΠSPF
t−1,h is a predetermined variable in

the SI-BNSW observation equation (8). Since the SPF does not compile 5-quarter ahead

inflation predictions necessary for h = 4, this bounds our RE- and SI-term structures of

average SPF anticipated accumulated inflation growth to H = 3. However, a lag of the

4-quarter ahead average SPF inflation predictions does appear in the dependent variable

ΠSPF
t−1,3 of the SI-BNSW observation equation (8) for h = 3. More information about the

data and links to the data sources are in section A.2.a of the appendix.

Figure 1 plots the CPI-SPF data on the 1981Q4–2018Q4 sample. The top left window

displays realized inflation, πt. Average SPF inflation predictions appear in the top right

window for h = 1, 2, and 3. These are for common date of origin (rather than for a common

target). As the horizon rises, the volatility of the forecast decreases. The bottom window

presents Πt,1, Πt,2, and Πt,3, which appear in the observations equations (6) and (8).

The CPI-term structure of anticipated accumulated growth of inflation by the average

SPF shows troughs during the 1981Q3–1982Q4, 1990Q3–1991Q1, 2001Q1–2001Q4, and

2007Q4–2009Q2 recessions as dated by the NBER. At the end of all but the last recession,

Πt,1, Πt,2, and Πt,3 peak. During the 2007Q4–2009Q2 recession, the peak occurs in 2008Q4.

Note this peak matches the trough in πt at the same date. The CPI-term structure of

anticipated accumulated growth of inflation by the average SPF is often greater than zero

between the first two recessions, the second and third recession, and subsequent to the last

recession, but this term structure is often less than zero from 2002Q1 to 2007Q3.

Forecasts for inflation are available for a longer time span, beginning in 1968:4, if we

study the inflation rate in the GDP deflator rather than the CPI. These forecasts are for

seasonally adjusted levels of the deflator, defined as (a) the GNP deflator prior to 1992,

(b) the GDP deflator from 1992 to 1995, and (c) the chain-weighted price index for GDP

from 1996 to the present. Then implicit mean forecasts for the annualized growth rate in

the deflator are from mean PGDP Growth.xls.

Plots of the PGNP/PGDP-SPF data on the 1969Q1–2018Q4 sample are found in

figure 3. The span of years, of course, now includes the high-inflation years of the 1970s.
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The structure of the plots matches that in figure 1. There is less volatility and less evidence

of a business-cycle pattern in Πt,1, Πt,2, and Πt,3 for this measure of inflation than for CPI

inflation in figure 1. However, the term structure of PGNP/PGDP anticipated accumulated

growth of inflation exhibits a sharp trough in the 1973Q4–1975Q1 recession. As was true

for CPI inflation, there is a peak late in the 2007Q4–2009Q2 recession, though in this case

it occurs exactly at 2009Q4. Again this peak matches the trough in πt at the same date.

The PGNP/PGDP-term structure of anticipated accumulated growth of inflation by the

average SPF is often negative in the 1970s, then positive in the 1980ss and 1990s.

The SPF also contains data on long-term inflation forecasts, specifically over the next

year and the next ten years. The one-year forecast is the average of the median forecasts

for h = 1 to h = 4. The ten-year forecast is the annual average inflation rate predicted for

this period. However, this survey information has been collected only since 1991. Forecasts

for the PCE deflator have been collected only since 2007.

5.2 Priors for the RE- and SI-SPF State Space Models

The parameter vector of MRE is ΘRE = [ρ συ σψ,1 σψ,2 σψ,3]′. The parameter

vector ΘSI = [Θ′RE ση λ]′ is tied to MSI . Table 2 lists our priors for the elements of

ΘRE and ΘSI . The PMH-MCMC simulator draws from these priors to generate posterior

distributions of MRE and MSI .

We select a truncated-normal (T N ) prior for ρ to reflect our uncertainty about infla-

tion gap persistence. The AR1 coefficient of εt is drawn from a standard normal distribution

with support restricted to ρ ∈ (−1, 1). This prior yields five and 95 percent prior quantiles

of −0.87 and 0.87.

The prior on συ is a χ(3) distribution with location and scale parameters of zero and

0.2. We invoke the same prior for ση in ΘSI . Table 2 shows these priors share a median

of 0.31. The 5 and 95 percent quantiles are 0.12 and 0.56, which contain the standard

calibration that sets ση and συ to
√

0.2; see Stock and Watson (2007) and Creal (2012).

Shephard (2013) places a prior on these parameters in his version of the BNSW model

that is similar to ours. As is his aim, our intent is to squash incredible draws of ση and

συ.

We select the inverse-gamma (IG) distribution for the prior on the fixed volatility
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parameters, σψ,1, σψ,2, and σψ,3, on the measurement errors ψ1,t, ψ2,t, and ψ3,t. Table 2

shows the dependence of the shape and scale coefficients, 0.1T and 0.045T , of these IG

priors on the sizes of the CPI-SPF and PGNP/PGDP-SPF inflation samples, T = 149 and

200. Our priors imply a median of 0.45 and 0.46 for the CPI-SPF and PGNP/PGDP-

SPF inflation samples. Prior uncertainty is greater for the shorter CPI-SPF inflation

sample compared with the PGNP/PGDP-SPF inflation sample as shown by 5 and 95

percent quantiles of [0.31, 0.74] and [0.32, 0.68] in table 2. A similar IG prior on volatility

parameters is used by Berger, Everaert, and Hauke (2016).

The SI parameter λ is given a T N prior. Table 2 displays a prior mean equal to 0.5

with a unit variance. The prior median of λ is 0.44, which approximates the estimates

reported by Coibion and Gorodnichenko (2015), and its 5 and 95 percent quantiles are 0.05

and 0.95. These quantiles indicate the prior frequency of SI updating of inflation forecasts

runs from one to 20 quarters on average. Hence, our prior on λ is weakly informative on

its support of λ ∈ (0, 1).

Priors also are needed to initialize gap inflation SV, ln ξ2
υ,0 and trend inflation SV,

ln ξ2
η,0. We endow ln ξ2

υ,0 and ln ξ2
η,0 with log normal (LN ) priors. The prior mean equals

the log of the square of the share of the pre-sample variance of the first difference of

realized CPI or PGNP/PGDP inflation attributed to trend or gap inflation minus a half.

The pre-sample covers the 40 quarters before the start of either sample. Table 2 lists the

prior means of ln ξ2
υ,0 and ln ξ2

η,0 for the CPI and PGNP/PGDP samples. The prior means

are larger for the CPI sample or ln ξ2
υ,0. We set unit variances for these priors. These

parameterizations suggest the priors are uninformative because the 5, 50, and 95 percent

quantiles are [0.21, 1.08, 5.62], [0.06, 0.32, 1.66], [0.06, 0.31, 2.23], and [0.02, 0.09, 0.48]

for ln ξ2
υ,0 and ln ξ2

η,0 on the CPI and PGNP/PGDP samples, respectively.

6. Findings

We next describe the findings, in two formats. Tables 3 and 4 describe posterior dis-

tributions of parameters (including ρ, describing persistence, and λ, describing stickiness)

and of innovations to trend inflation. Then figures 2 and 4 present the posterior medians

of the unobserved states at each date: τt|t, εt|t, ξη,t|t, and ξυ,t|t.
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6.1 Posterior Distributions of Parameters

There are four key features of the posterior densities for the model parameters, which

are shown in table 3. First, inflation-gap persistence is quite modest. The posterior

median value of ρ̂ ranges from 0.099 to 0.254 depending on the price measure (and hence

time period) and RE or SI version of the model. And the 95% credible sets are quite

narrow and quite different from the prior sets in table 2 (which have a median of 0), so

that this parameter is well-identifed in each case.

Second, σ̂η and σ̂υ—the standard deviations of innovations to the volatilities in trend

and gap inflation respectively— are also well-identified. For CPI inflation these two stan-

dard deviations are of comparable scale, while for GNP/GDP deflator inflation the poste-

rior median of σ̂η is roughly 2.5 times larger than that of σ̂υ. However, for both measures

of inflation both SV terms are clearly necessary to reconstruct the history of US inflation.

Table 3 also shows the standard deviations of measurement error (σ̂ψ,1, σ̂ψ,2, and σ̂ψ,3)

which are similar across horizons.

Third, the stickiness parameter λ̂ has a posterior median of 0.438 (with a 95% credible

set [0.334, 0.548]) for the CPI inflation rate and a posterior median of 0.366 (with a 95%

credible set of [0.290, 0.450]) for the GDP deflator inflation rate. The prior median in table

2 is 0.44. Thus for the CPI sample the posterior median barely moves from the prior. In

contrast, for the longer GDP deflator sample both the median and the 95% credible set

are shifted down relative to the prior median. This shift does not occur if we also limit

the GDP deflator sample to the period after 1981, so it is an effect of the 1970s not of

the measure of inflation. Intuitively, the surge in inflation in the 1970s followed by the

disinflation of the 1980s identifies λ, as observed forecasts are slow to catch up to realized

inflation. This pattern is evident in the lower panel of figure 3, where ΠSPF
t,h ≡ πSPFt,h − πt

is negative for much of the 1970s then positive for the early 1980s.

Fourth, then, there is a noteworthy difference between the findings for the CPI inflation

rate and those for the GDP deflator inflation rate, as shown in the last row of table 3. For

the CPI inflation rate the log marginal data densities favour the RE model over the SI one,

while the reverse is true for the GDP deflator inflation rate. These last two observations

show that data from the 1970s are highly informative and important for distinguishing
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between the RE and SI models. The rest of our reporting thus focuses on the RE model

for the CPI and the SI model for the GDP deflator.

6.2 Inflation Components

To study the slowly evolving trend, table 4 presents posterior moments of filtered,

trend inflation ηt|t = (τt|t−τt−1|t−1)/ξη,t−1. The first row gives the median of the posterior

standard deviation of ηt|t. The SI model finds larger values for this volatility measure than

the RE models do.

The UC model assumes that ηt is a martingale difference series. Our approach allows

for tests of this assumption, in the form of tests for persistence in the extracted measure ηt|t.

Table 4 presents posterior median autocorrelations and mean Ljung-Box statistics (along

with their 95% credible sets). For the most part, these show little remaing persistence.

However, there is some evidence of higher-order persistence in the innovations to trend

inflation measured by the GDP deflator.

For CPI inflation figure 2 shows posterior medians for the unobserved states at each

date, along with 68% uncertainty bands. (For comparison, a similar format is used by

Cogley and Sargent, 2015.) The first panel shows realized CPI inflation along with the

slowly evolving trend τt|t. The trend component converges towards 2% and hovers around

that value after 2009. But 2% lies in the 68% band for most quarters since 2001. The

median trend also is little affected by recessions. The second panel shows the posterior

median of the inflation gap εt|t. Its low estimated persistence is evident from the plot.

Gap inflation falls sharply part way through each recession.

The third panel shows the stochastic volatility in trend inflation, ξη,t|t. There is a

clear moderation in trend inflation over time, as the posterior median of ξη,t|t falls over

time. Cecchetti et al (2017) model several measures of US inflation using a UC model

with stochastic volatility (though not using survey data) and also note a downward trend

in the innovation variance of τt. Because τt coincides with long-run inflation expectations

under the BNSW model, the combination of the convergence of τt|t to 2% and the decline

in ξη,t|t can be seen as a success for monetary policy.

The fourth panel shows the stochastic volatility in gap inflation, ξυ,t|t. This is on a

much larger scale than trend SV. Grassi and Proietti (2010) and Creal (2012) find that the
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volatility of CPI inflation has increased recently, with the increased volatility attributed to

the transitory rather than the permanent component. We do not find this upward trend.

Notice, though, that gap uncertainty tends to rise late in recessions. Though there are

only four recessions in the CPI sample there thus is a clear pattern: As recessions unfold

gap inflation falls and its uncertainty rises.

Figure 4 shows posterior medians for GDP deflator inflation. The first panel shows

the median and 68% uncertainty band for τt|t. The median trend estimate peaks in 1981

at a value near 9%. It then declines to hover around 2%. It is notable that the 68%

uncertainty band includes the 2% value as early as 1996.

The second panel shows the inflation gap εt|t. Again its low persistence is apparent

from the figure. The largest spike in gap inflation occurs in the 1973–1975 recession.

Gap inflation is mostly negative from the end of the 1981–1982 recession to 2000. And it

has negative spikes at the end of the 2007–2009 recession and at several point thereafter.

According to the logic of the BN model, this suggests that forecasters expected actual

inflation to rise and return to trend at these times.

The third panel shows the stochastic volatility in trend inflation, ξη,t|t. Prior to the

1990s there is much uncertainty associated with this measure, as shown by the wide 68%

uncertainty band. But the median shows a considerable decline by the mid 1990s. Cogley

and Sargent (2015) find a moderation in GDP deflator volatility in the 1990s using a long

span of annual data up to 2012.

The fourth panel shows the SV in gap inflation, ξυ,t|t. For GDP deflator inflation, this

is now comparable in scale to that of trend volatility. Stock and Watson (2007) found that

the moderation in inflation after 1990 was due to a fall in the innovation variance in the

permanent component not the tempoary one. Here there is some evidence of moderations

in both components, though the decline in gap volatility appears to have been complete

by the 1990s. In contrast with estimates for CPI inflation, there is little evidence that gap

volatility rises in recessions, of which there are now seven in the sample.

The key finding is common to both measures of inflation. Trend inflation has converged

near 2% and its volatility has declined over time. It is noteworthy that both tendencies date

from the 1990s. But the behavior of the inflation gap differs depending on the inflation
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measure. For CPI inflation, the inflation gap declines in recessions, while its volatility

increases. And the stochastic volatility in the inflation gap has not declined over time.

For GDP deflator inflation there is little evidence of a cyclical pattern in the gap or its

volatility, and more evidence of a decline in that volatility at least until the 1990s.

7. Conclusion

This paper studies the unobserved components model of US inflation. The trend com-

ponent is identified with long-term inflation expectations. The deviation of actual inflation

from its trend, which is inflation’s cyclical component, is interpreted as the inflation gap.

We show how to measure these components using professional forecasts under either ra-

tional expectations or sticky information. The procedure involves only realized inflation

and mean forecasts, as the use of other covariates is implicitly outsourced to professional

forecasters.

Consistent with the assumptions of the model, the resulting innovations to trend and

gap inflation are serially uncorrelated as are the innovations to the stochastic volatilities.

We find that inflation-gap persistence is quite low. Information stickiness can be identified

and is especially important to describe the 1970s. Whether inflation is measured by the

CPI or by the GDP deflator, the trend converges to near 2% and its volatility declines over

time, two tendencies largely complete by the late 1990s.
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Table 1. RE- and SI-SPF State Space Models

RE-SPF State Space Model, MRE

RE-Observation Equations: ΠSPF
t = CRESRE,t +DREΨRE,t, ΨRE,t ∼ N(03×1, I3), where

ΠSPF
t = [πSPFt,1 − πt, . . . , πSPFt,3 − πt]′, CRE = [ρ − 1, . . . , ρ3 − 1]′, SRE,t+1 = εt+1, DRE

is a diagonal matrix with its nonzero elements the column vector [σψ,1, . . . , σψ,3]′, and
ΨRE,t = [ψt,1, . . . , ψt,3]′.

Conditionally Linear State Equation: SRE,t = ARESRE,t−1 +BRE,t−1ERE,t, where ARE =
ρ, BRE,t = ξυ,t, ERE,t = υt, and υt ∼ N(0, 1).

Nonlinear State Equation, Log Random Walk of Gap Inflation SV: ln ξ2
υ,t = ln ξ2

υ,t−1 +
συφυ,t, where φυ,t ∼ N(0, 1).

SI-SPF State Space Model, MSI

SI-Observation Equations: ΠSPF
t = CSI,tSSI,t− λξη,t−1ηtI3, where the vector of predeter-

mined lagged dependent variables, ΠSPF
t−1 = [πSPFt−1,1−πt−1, . . . , π

SPF
t−1,3−πt−1]′, creates time

variation in CSI,t = [(1−λ)CRE I3 03×3 ΠSPF
t−1 ], SSI,t = [εt δt,1 . . . δt,3 −λζt,1 . . .−λζt,3 λ]′,

δt,h = ζt,h − λζt−1,h, and ζt,h = σψ,hψt,h for h = 1, 2, and 3.

Conditionally Linear State Equations: SSI,t = ASISSI,t−1 + BSI,t−1ESI,t, where the first
row of ASI has ρ in the (1,1) position and zeros elsewhere, the next three rows of ASI are
[λ I3 03×3 I3 03×3] and the last four rows are full of zeros except the bottom diagonal
position that is λ. Similarly, BSI,t−1 has ξυ,t−1 as its (1,1) element and zeros in the rest
of the first row. The next six rows are [03×1 I3] and [03×1 − λI3]. Zeros fill the the last
row of BSI,t−1. The SI-state impulse vector is ESI,t = [υt ζt,1 ζt,2 ζt,3]′.

Nonlinear State Equations, Log Random Walks of Trend and Gap Inflation SVs: ln ξ2
η,t =

ln ξ2
η,t−1 +σηφη,t and ln ξ2

υ,t = ln ξ2
υ,t−1 +συφυ,t, where φη,t ∼ N(0, 1), φυ,t ∼ N(0, 1), and

E[φη,tφυ,`] = 0 for all dates t and `.
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Table 2. Priors of the RE- and SI-SPF Models

Model Prior Parameters Quantiles
Parameter Distribution θ1 θ2 5% 50% 95%

Inflation Gap AR(1), ρ T N 0.00 1.00 [-0.87, 0.00, 0.87]

Trend Inflation SV, ση χ(3) 0.00 0.20 [0.12, 0.31, 0.56]

Inflation Gap SV, συ χ(3) 0.00 0.20 [0.12, 0.31, 0.56]

Measurement Error, σCPIψ,h IG 14.90 6.70 [0.31, 0.45, 0.77]

Measurement Error, σPGDPψ,h IG 20.00 9.00 [0.32, 0.46, 0.68]

Sticky Information, λ T N 0.50 1.00 [0.05, 0.44, 0.95]

Initial Gap SV, ln ξ2 CPI
υ,0 LN 0.08 1.00 [0.21, 1.08, 5.62]

Initial Gap SV, ln ξ2 PGDP
υ,0 LN -1.14 1.00 [0.06, 0.32, 1.66]

Initial Trend SV, ln ξ2 CPI
η,0 LN -1.16 1.00 [0.06, 0.31, 2.23]

Initial Trend SV, ln ξ2 PGDP
η,0 LN -2.38 1.00 [0.02, 0.09, 0.48]

Columns under θ1 and θ2 are parameters of the prior distributions. The AR1 parameter, ρ, of gap inflation

has a prior that is distributed truncated-normal (T N and parameterized by a zero mean, θ1=0, and unit
standard deviation, θ2=14. The bounds on the prior are ρ∈(−1,1). The scale volatilities ση and συ on the

SVs of trend and gap inflation have priors distributed chi (χ) with three degrees of freedom, located at

θ1=0, and the scale parameter θ2=0.20. The inverse-gamma (IG) distribution describes the priors on the
scale volatility parameters, σψ,h, of the measurement errors on the SPF inflation predictions net of realized

inflation, h=1,...,4. The shape and scale coefficients are θ1 and θ2 for the priors on σψ,h, h=1,...,H. Since

the CPI-SPF and PGNP/PGDP-SPF inflation sample sizes differs, TCPI=149 and TPGDP=200, θ1=0.1×T
and θ2=0.045×T for the former and latter samples. The SI parameter λ∈(0,1) and has a prior distributed

T N with mean and standard deviation of θ1=0.5 and θ2=1.0. Inflation trend and gap stochastic volatilities
are initialized by drawing from the log normal (LN ) distribution. The prior means are computed as the log

of the square of share of the variance of the difference of inflation attributed to trend or gap inflation minus

one-half. The shares are 0.28 and 0.52, respectively, with the remaining 0.20 assigned to measurement
error. The variance is 1.4 for πPGNPt from 1958Q1 to 1967Q4 and 2.57 for πCPIt from 1961Q to 1980Q4.

The prior standard deviation is one for these initial conditions.
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Table 3. Summary of the Posterior Distributions

CPI Inflation GNP/GDP Deflator Inflation
Sample: 1981Q4–2018Q4 Sample: 1969Q1–2018Q4

Parameter MRE MSI MRE MSI

ρ̂ 0.099 0.162 0.234 0.254
[0.078, 0.120] [0.126, 0.212] [0.193, 0.276] [0.198, 0.319]

σ̂η 0.447 0.391 0.400 0.406
[0.407, 0.514] [0.221,0.612] [0.352,0.475] [0.266,0.592]

σ̂υ 0.352 0.356 0.175 0.149
[0.225, 0.511] [0.229, 0.517] [0.100, 0.282] [0.088, 0.243]

σ̂ψ,1 0.220 0.191 0.289 0.189
[0.197, 0.247] [0.163, 0.219] [0.261, 0.319] [0.161, 0.219]

σ̂ψ,2 0.132 0.115 0.195 0.140
[0.113, 0.153] [0.099, 0.134] [0.169, 0.225] [0.122, 0.162]

σ̂ψ,3 0.180 0.156 0.261 0.166
[0.157, 0.204] [0.132, 0.181] [0.230, 0.293] [0.142, 0.193]

λ̂ — 0.438 — 0.366
[0.334, 0.548] [0.290, 0.450]

ln MDD −129.932 −150.516 −184.480 −125.837

Posterior median estimates of RE- and SI-SPF model parameters are displayed in the table. Below these

estimates, the brackets contain five and 95 percent quantiles extracted from the posterior distributions.
The PMH-MCMC produces the posterior distribution of the scale volatility parameter, ση, on innovations

to trend SV for the SI-SPF model, MSI . This parameter is backed out of the ith draw of the posterior

distribution of trend SV, ξη,t, as σ̂η,i=

√
T−1

∑T

t=1
(∆ ln ξ2

η,t,i
)2, i=1,...,K, for the RE model, MRE ; see

section 3 of the appendix for details. Log marginal data densities, ln MDDs, are listed in the last line of

the table. We compute the ln MDDs using the modified harmonic mean estimator; see Geweke (2005) and

section 3 of the appendix for details.
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Table 4. Posterior Moments of Innovations to Trend Inflation

CPI Inflation GNP/GDP Deflator Inflation
Sample: 1981Q4–2018Q4 Sample: 1969Q1–2018Q4

Parameter MRE MSI MRE MSI

s(ηt|t) 1.218 2.381 1.022 1.303
[1.140, 1.329 ] [1.604, 3.676 ] [0.955, 1.101] [1.035, 1.655]

ACF(1) -0.002 0.027 0.030 0.071
[-0.042, 0.034] [-0.025, 0.088] [-0.005, 0.074] [0.006, 0.136]

ACF(2) -0.200 -0.120 -0.192 -0.123
[-0.230, -0.151] [-0.191, -0.061] [-0.243, -0.125] [-0.204, -0.047]

ACF(3) -0.010 0.013 0.007 0.019
[-0.043, 0.012] [-0.049, 0.072] [-0.026, 0.048] [-0.040, 0.063]

ACF(4) 0.045 -0.003 0.186 0.198
[0.015, 0.084] [-0.055, 0.042] [0.159, 0.203] [0.157, 0.247]

ACF(8) 0.071 0.156 0.096 0.101
[0.044, 0.101] [0.049, 0.129] [0.055, 0.129] [0.037, 0.189]

Q(4) 6.608 3.263 15.077 13.488
(0.177) (0.568) (0.011) (0.022)

Q(8) 17.862 12.215 20.106 21.331
(0.032) (0.196) (0.017) (0.025)

The table presents posterior moments of innovations to filtered trend inflation, ηt|t=(τt|t−τt−1|t−1)/ξη,t−1,

which imply a loss of one observation from TCPI=149 and TPGDP=200. The first row is the median of
the posterior standard deviation of ηt|t, s(ηt|t). The median autocorrelation function at lag j is denoted

ACF(j). Five and 90 percent quantiles appear in brackets. The mean posterior Ljung-Box statistic with q

lags is in the row denoted Q(q). The rows below Q(4) and Q(8) display Bayesian p-values in parentheses.
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Figure 1: CPI Inflation and SPF Predictions, 1981Q4–2018Q4

Notes: The first panel shows realized CPI inflation. The second panel shows SPF forecasts at a common date, at h = 1,2,3 quarters
ahead. The third panel shows the differences ΠSPFt,h ≡ πSPFt,h − πt used in the observation equations. Vertical gray bands denote NBER
dated recessions.
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Figure 2: Unobserved States in CPI Inflation, 1981Q4–2018Q4

Notes: The first panel shows realized CPI inflation with the median of the posterior distribution of trend inflation τt|t . The second
panel shows the median of the posterior distribution of gap inflation εt|t . The lower panels shows the medians of the posterior
distributions of SV in trend and gap inflation, ξη,t and ξυ,t , respectively. The panels also contain 68% uncertainty bands. Vertical gray
bands denote NBER dated recessions.
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Figure 3: PGNP/PGDP Inflation and SPF Predictions, 1969Q1–2018Q4

Notes: The first panel shows realized PGNP/PGDP inflation. The second panel shows SPF forecasts at a common date, at h = 1,2,3
quarters ahead. The third panel shows the differences ΠSPFt,h ≡ πSPFt,h −πt used in the observation equations. Vertical gray bands denote
NBER dated recessions.
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Figure 4: Unobserved States in PGNP/PGDP Inflation, 1969Q1–2018Q4

Notes: The first panel shows realized PGNP/PGDP inflation with the median of the posterior density of trend inflation τt|t . The second
panel shows the median for gap inflation εt|t . The lower panels shows the medians for SV in trend and gap inflation, ξη,t and ξυ,t
respectively. The panels also contain 68% uncertainty bands. Vertical gray bands denote NBER dated recessions.
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