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Then again, price history has not yet succeeded in acquiring its own

tools of analysis. For better or worse, it must rely on those provided by

economists and statisticians.

—Braudel and Spooner (1967, p 374)

1. Introduction

In this study we statistically model inflation in the UK (and earlier England) since

the thirteenth century. There are three aims. First, while the inflation of the 20th century

is well known, historians have argued that there was an earlier wave of inflation (or price

revolution) in the 16th century and that there were also such waves in the 13th and 18th

centuries. In historical studies a wave is defined as a sustained increase in inflation, relative

to the rate in adjacent time periods. We ask whether these two (or possibly four) waves

appear in long-horizon inflation forecasts, within a unified statistical framework. Second,

we report on inflation predictability (as defined by Cogley, Primiceri and Sargent, 2010),

price-level uncertainty, and price-level instability (as defined by Cogley and Sargent, 2015

and Cogley, Sargent, and Surico, 2015) for this long span. Third, we provide measures of

inflation expectations, based on a time-series model, that in turn allow new measurements

of historical, real interest rates.

Price history as a field of research has three main components: (a) selecting and

recording individual prices and constructing price indexes; (b) documenting patterns in

prices or inflation rates; (c) attributing these patterns to causes such as changes in the

money supply or real shocks. This study falls in category (b). We draw on recent research

in category (a) that constructs consumer or retail price indexes. Research in category (c)

may remain too challenging for this long time span, given the lack of data on some other

macroeconomic indicators.

Modelling UK inflation over the past 750–800 years is itself challenging because infla-

tion rates over most of this period appear to be very noisy. The noise might reflect actual

changes caused by climate and harvests varying as well as unavoidable measurement error

associated with collecting and aggregating prices before the advent of the Cost of Living

Index (which began in 1914) and the Retail Price Index (which began in 1947). We first
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allow for the fact that reported inflation may have measurement error with a variance that

depends on the data source. We then model underlying or true inflation using an nth-order

autoregression, AR(n). The AR(n) grounds its forecast of inflation on recent inflation his-

tory. In practice our evidence shows the lag length is 3 years. The noise makes modelling

heteroskedasticity in the regression error important. We estimate the AR(n) models with

slowly evolving stochastic volatility (SV). The AR(n)s also feature time-varying parame-

ters (TVPs) so that the intercept and autoregressive parameters also may slowly evolve

over time. This gives an AR(n) the chance to fit data from the high-inflation period after

1935 and from earlier centuries, without our knowing turning points in advance.

The resulting TVP-SV-AR(n) optimally weights past inflation experiences to forecast

future inflation. Forecasts (from h-year ahead to the long run) eliminate the noise making

evident patterns in these predictions that are obscured in sample inflation yet may have

mattered for setting interest rates or other contractual prices. We thus define inflation

waves anew, as persistent fluctuations in long-horizon, expected inflation. The idea is to

see whether these forecasts are persistently higher over certain long spans in addition to

the post-1935 time period.

The forecasting model is univariate. Particularly as one moves into the 20th century

one might think of forecasting with other variables in the information set, or, later still, us-

ing data from forecast surveys or financial markets. However, Faust and Wright (2013) find

that slowly-evolving autoregressions do quite well in an inflation forecasting tournament

for several countries including the UK. Survey data improve them but conditioning on ac-

tivity variables generally does not. Still, this study certainly is not intended as a last word

on post-1945 inflation forecasts for example. We focus on the TVP-SV-AR model for (a)

some comparability with other studies of inflation dynamics such as Cogley, Sargent, and

Surico (2015) and especially (b) comparability over time, so we can compare long-horizon

forecasts, inflation predictability, and price-level instability across many centuries.

Section 2 briefly summarizes a number of historical studies, many of which documented

commodity prices. We use more recently constructed consumer (or retail) price indexes

assembled by Clark (2020). We thus focus on overall inflation rather than on grain prices

for example. Section 3 describes this index. Section 4 describes the measurement-error

2



model, the TVP-SV-AR(n), and prior densities for their parameters.

Section 5 presents the findings in the form of posterior densities for a range of statistics,

including measures of persistence and stochastic volatility. We first report on estimates of

the extent to which measurement error declined over time and then discuss the dynamics

of inflation. The main finding is that there is only one wave in long-horizon inflation

forecasts, that of the 20th century. The wave takes the form of a higher inflation intercept

and especially higher persistence in inflation, though that second feature began much

earlier. We also find that volatility tends to fall over time as the economy becomes more

diversified. But this pattern of declining SV is by no means monotone. For example,

volatility increases in the 1500s, a period often characterized as a price revolution, during

the Napoleonic Wars, and during World War I.

Section 5 also describes the measurement and findings for inflation predictability and

price-level instability. We find that inflation was predictable (measured by the posterior

distribution of its R2 statistic) at horizons of 1, 2, 3, and 5 years, for every year since the

thirteenth century. Price-level instability generally trends down over time, but with local

peaks in 1558, 1800, 1917–1922, and 1975.

Section 6 provides new measures of real interest rates at short and very long maturities

for the periods since 1695 and 1701 respectively. For the 1695–2019 period we estimate

that the short-term real interest rate peaked in 1922 while the long-term real interest rate

peaked in 1974. Section 7 summarizes the findings. A variety of details concerning the

data, algorithm, and formulas are collected in appendices in the online supplement.

2. Historical Studies

UK price history has a long history, including classic studies by Rogers (1866–1902),

Abel (1935; translated 1980), Beveridge (1939), and Phelps Brown and Hopkins (1981).

Fischer’s (1996) book The Great Wave provided an overview of price history. He argued

that there were four waves in inflation overall in Europe: roughly 1180–1350; 1480–1650;

then from the late 1700s to the early 1800s; and from 1896 to the present. He also argued

that inflation was higher and less volatile in each successive wave.

For the first of these hypothesized waves Mate (1975) discussed a burst of inflation
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during 1305–1310. She attributed it to an inflow of silver to England, in turn due to a

change in France’s mint ratio, an export surplus, and a prohibition on exporting English

coins.

The second wave or price revolution is much more studied. Doughty (1975) aggregated

prices collected by Rogers (1866–1902) and Beveridge (1939) to form an annual index

of industrial prices in southern England for 1401–1640. He found the inflation rate in

this index was particularly high during 1542–1560. Outhwaite (1982) used the indexes

constructed by Phelps Brown and Hopkins (1981) to suggest an increase in inflation began

around 1480 but certainly was clear by 1520.

Historians have long debated the causes of this inflation. Naturally a number of studies

focus on changes in the money supply. Gould (1970) described the debasement that began

in 1544, late in the reign of Henry VIII. Challis (1989) attributed the depreciation of the

currency beginning in 1521 to an increased supply of silver to the mint, often from the

crown itself (for example plate confiscated from monasteries). The debasements ended

with the Elizabethan restoration of the coinage in 1560–1561, but Outhwaite suggested

that inflation continued. Paper money was not introduced until late in the 17th century.

But foreign coins and tokens made of copper or lead were used to solve the problem of

small change (discussed by Sargent and Velde, 2003) in the Stuart period and so added to

the money supply.

The idea that silver from South America via Spain was the cause of inflation did not

become widespread until the 1600s. That idea was then popularized by Rogers (1866–1902)

and then of course by Earl Hamilton in his books on Spain published in the 1930s. Other

historians have emphasized physical explanations such as population changes, discussed by

Phelps Brown and Hopkins (1957) for the 1500s or by Fischer. But Outhwaite suggested

that data on both the money supply and population are unlikely to ever be refined enough

retrospectively to decide among explanations.

Braudel and Spooner (1967, p 400) studied the three-hundred-year span from 1450 to

1750 in Europe, noting that the consensus was:

The four long periods are: a fall, or rather stagnation, in the fifteenth century;
a rise in the sixteenth continuing into the seventeenth century; then a fall until
about 1720–50; finally a renewed inflation in the eighteenth century.
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Fischer referred to the period from 1750 to 1820 as the third wave, with reference to

commodity prices and for England to the index of Phelps Brown and Hopkins (1957). The

British inflation of this period often is attributed to the suspension of gold convertibility

from 1797 to 1821. Braudel and Spooner (1967) focused on the long term (la longue durée,

to use the term of the Annales school), meaning the secular trend beyond cycles. We

suggest measuring this feature with a long-horizon inflation forecast.

3. Measurement

We use the annual retail price index, constructed and described by Clark (2020) at

MeasuringWorth.com. For 1209–1869 the locations are all in England. For simplicity we

refer to the UK in the paper’s title, following Clark (2020) and Thomas and Dimsdale

(2017). For 1870–1914 the source is Feinstein (1995) and the series applies to the entire

UK. For 1915–1946 the source is the UK cost-of-living index. After 1947 the price index

is the series CDKO of the Office of National Statistics (ONS).

The largest component of the Clark price index is food, followed by fuel, lodging,

light, services, and manufactured goods. These in turn are aggregates of more detailed sub-

components. Clark describes how the weights vary over time to reflect changing patterns of

expenditure (especially after the Industrial Revolution) and also the absence of some prices

in the early centuries. As in a modern index some goods (like cider and tallow candles)

have declining weights or disappear from the index while new goods (like potatoes, coffee,

and gas lighting) are added. Observations are missing from the Clark series for 1213,

1215, 1222, 1228–1231, 1234, and 1238–1244. As a result, our estimation and tests use

observations from 1245 on.

The upper panel of Figure 1 shows this (log) price index, puk,t, from 1250 to 2019.

Here one can see the prolonged inflation beginning in 1935. But the series also drifts up

over 1250–1934. The lower panel shows the corresponding inflation rate πuk,t, which is the

first difference of puk,t, beginning in 1251. The annual average inflation rate is 0.93% for

the entire span and 0.42% for the period before 1935. Online Appendix A discusses and

graphs the alternative indexes proposed by Allen (2001) and Thomas and Dimsdale (2017)

as well as the earlier indexes collected by Mitchell (1988).

5



One might wonder whether to statistically model puk,t or, instead, πuk,t. To test for

unit roots Table 1 shows the DF-GLSu and QT statistics derived by Elliott (1999). These

offer higher power than the traditional ADF test. They draw the initial value from the

unconditional distribution rather than using a value of zero as the Elliott-Rothenberg-

Stock tests do. The lag length is selected by the BIC. Some critical values are given in the

notes to the table.

The results are shown first for the entire 1245–2019 sample, then for four

non-overlapping periods (1245–1439, 1440–1633, 1634–1827, and 1828–2019), and finally

for the periods after World War I and after World War II. For puk,t there is evidence of a

unit root for the entire sample and for each quarter of the sample with the exception of

1245–1439, where both statistics suggest that this variable may be stationary. For πuk,t

the DF-GLSu statistic is below the 1% critical value for the full sample, for each quarter,

and for 1919–2019. It is below the 2.5% critical value for 1946–2019. The QT statistic is

below its 1% critical value for each of these periods. Overall, then, Table 1 clearly suggests

that we model the inflation rate as a stationary series.

Looking at πuk,t in the lower panel of Figure 1 then—so as to put the data all on

a similar, stationary scale and allow comparisons—shows that it is not easy to detect

patterns over time. High rates of inflation or deflation were common in earlier centuries:

It is really the persistence of πuk,t that seems to have changed. Equivalently, the lower

panel shows the noisiness in the early data, discussed in the introduction.

Historians therefore often have smoothed the commodity price or inflation rate series

by averaging. Figure 2 illustrates the effects for πuk,t. The three panels show its averages

over the 10, 20, and 30 years prior to each year. The sample average is a random variable,

so surrounding each average is a 68% confidence interval, constructed with a HAC (Newey-

West) standard error with 1, 2, or 3 lags. As the window widens one can detect the waves

discussed in section 2. The average was relatively high in the late 1200s, middle 1500s,

and early 1800s and particularly low in the late 1800s.

Our idea in this paper is to instead base the smoother on the model with the best fit

to the data or the best forecasts. This is in contrast to the averages in Figure 2, which of

course use a pre-set window or span of years and fixed, equal weights on them. We test
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for the number of lags needed to statistically explain inflation or forecast its future values

and we estimate the weights on those lags. And the weights are not fixed but may evolve

slowly over time. This time-variation allows us to study this long series in a unified way,

with no need for pre-set break dates or tests for structural breaks.

4. Time-Varying Autoregression

Our statistical framework begins with allowance for measurement error. The variance

of the measurement error may depend on the span of data, because those data originate

in several sources. These time spans are 1251–1869 (for the majority of the Clark data),

1870–1914 (for the Feinstein data), 1915–1946 (for the first, official cost-of-living index)

and 1947–2019 (for the ongoing retail price index of the ONS). We index these four spans

by τ = 1, 2, 3, 4.

We assume that measured inflation, πuk,t, is given by the sum of true inflation, πt,

and measurement error, mt:

(1) πuk,t = πt +mt,

and

(2) mt =
√
βτσuut ut ∼ N

(
0, 1

)
,

so that βτσ
2
u is the variance of measurement error in span τ . As in Cogley and Sargent

(2015), Cogley, Sargent, and Surico (2015), and Amir-Ahmadi, Matthes, and Wang (2016),

the constancy of βτ within a span, along with its discrete changes across spans, allows it

to be identified separately from stochastic volatility in true inflation, which is described

below.

In this model β1 = 1 so that σ2
u is a baseline variance for 1251–1869. Also β4 = 0 for

1947–2019 following Cogley, Sargent and Surico (2015), so inflation is measured without

error in the most recent span. In between these values we estimate β2 and β3, which

describe the extent to which the variance of measurement error may fall relative to the

initial span. Hence equation (2) gives the variance of mt as an element of the vector

[1 β2 β3 0]′σ2
u.
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Table 2 describes priors for the three measurement-error parameters, σ2
u, β2, and

β3. For σ2
u the prior is inverse gamma with median 0.18 and a 5%–95% IQR of [0.007,

0.072]. For the parameters describing the decay in measurement-error variance over time

we adopt Beta distributions, because those are appropriate for proportions. For the 1870–

1914 period the prior for β2 is Beta(5,3), which has a median of 0.635 and a 5%–95% IQR

of [0.341, 0.871]. For the 1915–1946 period the prior for β3 is Beta(3,5), for which the

corresponding statistics are 0.364 and [0.129, 0.659].

With these priors the weights β2 and β3 are restricted to lie in (0,1). In the early

centuries of this study the consumption basket was no doubt simpler than it was in the 19th

and 20th centuries for example. Nevertheless, there are good reasons to think measurement

error was greater in the first span. First, some components are simply missing early in

the Clark data. For example, there is no measure of lodging costs for much of the 13th

century. Second, the number of locations and institutions from which data originate is also

quite limited for the medieval and early modern periods. These facts motivate our prior to

restrict the weights βτ so that measurement error declines (or at least does not increase)

over time. However, some alternate models of measurement error are described below and

studied in Online Appendix B.

We model true inflation πt as an AR(n) with TVPs and SV. The autoregression is:

(3) πt = α0,t +
n∑
i=1

αi,tπt−i + ξtεt, εt ∼ N
(
0, 1
)

while SV evolves as a (log squared) random walk:

(4) ln ξ2
t = ln ξ2

t−1 + σφφt, φt ∼ N
(
0, 1

)
.

The AR parameters are αi,t for i = 0, 1, 2, . . . , n. They follow a multivariate random

walk with possibly correlated innovations. Let αt ≡ {α0,t, α1,t, α2,t, . . . , αn,t} and ηt ≡

{η0,t, η1,t, η2,t, . . . , ηn,t}. Then the TVPs evolve as:

(5) αt = αt−1 + ηt, ηt ∼ N(0n+1,Ωη).

The innovations ηt to the multivariate random walk of the TVPs are not independent,

according to equation (5), because the covariance matrix Ωη is not restricted to be diagonal.
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However, there is no correlation among either the elements of ηt and the innovation, εt, to

the AR(n), E(ηi,tεt) = 0, or the innovation to the (geometric) random walk, φt, of the SV

ξt, E(ηi,tφt) = 0, i = 0, 1, . . . , n. The same holds for φt and εt, E(φtεt) = 0. Finally, the

innovations to measurement error, ut, also are uncorrelated with εt, ηi,t and φt.

This time-series model has several appealing features. Using the recent history of

inflation as a basis for forecasts seems natural for economists and for historical forecasters.

But an AR with constant coefficients is unstable, if not also misspecified, when fitted to

this long span of data. Imagine, then, fitting rolling ARs with a finite data window to track

the evolution of a forecasting equation. In that case one would need to choose the length

of the widow over which to estimate and any decay in the weights on observations within

that span. Incorrect calibration of the window width and discount on past observation will

induce bias and inefficiency in estimates of the rolling ARs.

Estimation of the TVP-SV-AR(n) automates these decisions, as weights on specific

observations depend on the Kalman smoother, computed in the Bayesian sampler we use

to construct the posterior of the model. Hence, changes in the underlying dynamics of UK

inflation are addressed by time-variation in the scale of shocks to inflation, its unconditional

mean, and persistence in the TVPs and SV of the AR(n).

We estimate the TVP-SV-AR(n) on the UK inflation series for 1251–2019 while condi-

tioning on observations for 1245–1250, where n = 1, . . . , 6. These choices set the estimation

sample size to T = 769. Table 3 describes our priors for the TVP-SV-AR(n). Roughly

speaking these are empirical Bayes priors, based on OLS regression for the estimation

sample. The prior on the scale variance σφ in the innovation to SV is inverse gamma.

Table 4 describes how we select the autoregressive lag length, n. First, we calculate

log marginal data densities (MDDs), as recommended by Geweke (2005). This criterion

chooses the lag length n that the data most support, in terms of persistence and volatility,

given equations (1) and (2). The first row of Table 4 shows the data favor n = 3 conditional

on our priors.

Second, we calculate the Bayesian version of the Akaike information criterion (IC).

Watanabe (2010) derives this IC and refers to it as the widely applicable information crite-

rion (WAIC). The WAIC chooses the lag length to yield the best one-year-ahead forecasts
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(i.e. minimize predictive loss) along with estimating a penalty that approximates the

number of (unconstrained) parameters using information in the data and priors. Gelman

et al (2014, pp 173–174) label it the Watanbe-Akaike IC and recommend computing the

WAIC = −2
[
L̂Tn − V̂Tn

]
, where L̂Tn is the posterior mean of the log predictive likelihood

of a TVP-SV-AR(n) and the penalty, V̂Tn , is the posterior variance of this log likelihood.

The second row of Table 4 indicates the WAIC also chooses the lag length n = 3. Thus

the choice of lag length is the same whether one looks for the best fit or the best forecasts.

Online Appendix B studies alternate models of measurement error and alternate pri-

ors, drawing on these two measures of fit. Online Appendix B.1 includes AR(1) persistence

in the measurement error. However, estimates of the AR coefficient exhibited substantial

uncertainty with Bayesian credible sets covering zero in all cases. Online Appendix B.2

then studies a model in which there are no restrictions on the three variances across

τ ∈ {1, 2, 3}, other than their being positive. This model is similar to the one studied by

Cogley, Sargent, and Surico (2015) and Amir-Ahmadi, Mathes, and Wang (2016) except

that there is no persistence in mt. This alternate model of measurement error produces

estimates of median volatility that increase across spans from 1251 to 1946, which repli-

cates a puzzle documented by Cogley, Sargent, and Surico (2015). Otherwise, the two

models lead to similar economic conclusions. However, the ln MDD and WAIC criteria

support the baseline model compared with this alternate model. Finally, we also explored

attaching measurement error to puk,t rather than πuk,t but found that created explosive

dynamics in the process.

We also studied an alternate model that allows for sudden changes in SV. To do this,

we adopted a horseshoe prior that places time-varying heteroscedasticity on the variance

of the innovation to the random walk of ln ξ2
t+1. Online Appendix B.3 sets πuk,t = πt to

establish a simpler environment in which to examine this issue. Online Appendix B.4 then

applies the horsehoe prior in this environment. However, the two measures of fit suggest

the data are indifferent to adopting this alternate prior.

The TVP-SV-SVAR was introduced by Cogley and Sargent (2005) and Primiceri

(2005), who described a Markov chain Monte Carlo (MCMC) algorithm for estimation.

Our code to run the Metropolis-Hastings (MH) in Gibbs sampler adapts the algorithm
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described by Canova and Pérez Forero (2015) to a univariate model. The MH step follows

the Gibbs draw in the sampler. The Canova-Pérez Forero sampler uses the correction of

Del Negro and Primiceri (2015). We estimate SV in the TVP-AR(n)s by incorporating into

our version of the Canova-Pérez Forero sampler the ten-component mixture of normal dis-

tributions developed by Omori, Chib, Shephard, and Nakajima (2007). Online Appendix

C describes our MCMC sampler in detail both for the baseline model and for the alternate

models of Online Appendix B.

5. Posteriors

We next describe the findings in the form of posterior densities from the TVP-

SV-AR(3) with our baseline model of measurement error. We begin with the three

measurement-error parameters and then turn to TVPs and SV. The TVPs and SV al-

low us to study changes in inflation persistence and volatility over time and hence look for

inflation waves. We also examine inflation predictability and price-level instability.

5.1. Measurement Error. Recall that the measurement error model begins with a

baseline variance σ2
u for the first span. The posterior density for this value has a median of

0.00163 with a 5%–95% IQR of [0.00128, 0.00208]. This is a smaller scale of measurement

error than found by Cogley and Sargent (2015) for example, in part because their early

data were on more volatile commodity prices rather than a retail price index. The upper

panels of Figure 3 graph the prior and posterior densities for the two fractions that scale

down this variance for the next two time spans. For β2, which applies to 1870–1914, the

prior (dashed line) has a median of 0.636 while the posterior (solid line) has a median

of 0.442 with a 5%–95% IQR of [0.196, 0.746]. For β3, which applies to 1915–1946, the

prior has a median of 0.364 while the posterior has a median of 0.290 with a 5%–95%

IQR of [0.094, 0.587]. Thus both posteriors, although overlapping, have shifted left from

their respective priors, implying somewhat larger reductions in measurement-error variance

across time spans.

The lower left panel of Figure 3 shows the smoothed estimate of the measurement error

year by year, with its 68% credible sets. The sets narrow over spans τ , until measurement

error is zero after 1946. The lower right panel shows measured inflation, πuk,t along with
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the median of true inflation, πt, and the associated 68% credible sets. Median πt is of course

less volatile than πuk,t, while in some years its credible set extends to values comparable

to πuk,t.

5.2. Forecasts and Waves. Figure 4 presents posterior medians and credible sets for

several hidden states. The upper left panel contains the posterior median of the time-

varying intercept, α0,t. The upper right panel shows the posterior median of the sum of

the lag TVPs,
∑3
i=1 αi,t. This is a measure of persistence. The lower left panel plots the

median of the time-varying conditional mean or long-horizon forecast µπ,t. The changes

in parameters are unpredictable, so this long-horizon forecast is:

(6) µπ,t ≡ lim
j→∞

Etπt+j =
α0,t

1−
∑3
i=1 αi,t

,

which is computed as the median of the ratio of the posterior draws of the numerator to the

posterior draws of the denominator. This long-horizon forecast is the univariate version of

the inflation trend estimated and studied using a TVP-SV-VAR by Cogley and Sbordone

(2008). SV is depicted in the lower right panel. The four panels also display shadings that

are 68% Bayesian credible sets (i.e. the 16% and 84% quantiles) of the TVPs and SV.

The intercept term α0,t has considerable uncertainty. Its median is relatively high in

the 13th and 16th centuries. But the credible sets contain zero from 1261 to 1923. After

1923 both the median and the 68% credible set rise sharply in the 20th century. The

median of the posterior of α0,t peaks at 1.89% in 1975.

The persistence measure—in the upper right panel of Figure 4—exhibits a very low

frequency cycle. Its median falls until the 1350s, levels off from 1360 to 1560, rises for the

next 100 years, levels off again from then to 1755, and then rises continuously until 1974

before falling after that date to the end of the sample. The median reaches its minimum of

-0.460 in 1353 with a 68% Bayesian credible set [-0.768, -0.148]. It crosses zero in 1775–1776

moving from -0.004 [-0.428, 0.200] to 0.003 [-0.427, 0.197]. Its maximum is 0.623 in 1974

with a 68% Bayesian credible set [0.445, 0.789]. These differences can be distinguished

statistically. Thus it is not the case that the early inflation data are simply so noisy that

no patterns can be detected in them.
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The key findings are in the lower left panel, which shows the posterior median and

credible set for the long-run forecasts µπ,t of equation (6). Prior to roughly 1920, the

long-horizon forecasts µπ,t do not vary significantly over time. One could draw a range

of horizontal lines that would pass through these credible sets. Thus a series of (non-

independent) tests of the hypothesis that each value was equal to this constant would not

reject it one-by-one. The 68% credible sets of µπ,t contain zero from 1261 to 1923. Note

that we are not arguing that the forecasts might be zero, though that hypothesis also

would not be rejected before 1924 except for early in the sample.

This lack of early waves in long-run forecasts contrasts with the historical views cited

in section 2. For example, the traditional view of the price revolution of the 16th century

is that inflation was low by the standards of the 20th century but persisted over many

years to lead to a distinct inflation wave. In the UK inflation data, though, inflation

(whether measured or true) was volatile and had negative persistence during this period.

Long-horizon inflation forecasts were not noticeably different from those in the previous

and subsequent centuries.

The one great wave in long-horizon forecasts begins in the 1920s and is associated

with a rising intercept and rising persistence. The median of µπ,t peaks at 5.055% in 1974

with a 68% Bayesian credible set [2.633, 8.362]. In the next year, 1975, the actual inflation

rate (shown in the lower panel of Figure 1) also peaked, at 24.3%, the highest value since

the mid 1500s. That was also the year the Wilson government began its incomes policy,

described in the White Paper Attack on Inflation. The infamous IMF loan to the UK

followed in 1976. After 1976 the median declines steadily until 2019. The decline features

falls in the intercept and persistence measure. Median SV is also at an all-time low at the

end of this period.

In the lower right panel of Figure 4, median SV falls on average over time, so that fea-

ture is central to the specification. The decline in SV could be due to better measurement

from more sources or to genuine decreases in volatility with less dependence on weather

and harvests. Either way, though, that fall is not monotonic. For example, median SV

rises from 1477 to 1558, during the price revolution. During the first half of the sample,

median SV has local peaks in 1251, 1319, 1371, 1549, and 1597. Median SV also rises
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during the Napoleonic Wars and during World War I. It also has local peaks in 1800, 1921,

and 1975.

The one-year-ahead forecast or measure of expected inflation is:

(7) Etπuk,t+1 = α0,t +
n−1∑
i=0

αi+1,tπ̂t−i.

We next report the median of the ensemble of one-year-ahead expected inflation. These

forecasts are created by running the Kalman filter on the posterior of a TVP-SV-AR(n)

to produce π̂t−i, i = 0, . . . , n−1, multiplying these predictions by the posterior draws of

αi+1,t and to the result adding the associated posterior draws of α0,t.

Figure 5 shows the one-year-ahead forecasts of πuk,t and associated forecast errors

from the TVP-SV-AR (3) and equations (1) and (2). It also shows 90% Bayesian credible

sets. With our focus on the very long run we have so far described the 20th century as

a period of inflation. But of course 1921–1934 was a period of deflation, as shown in

Figure 1. Such fluctuations are one reason to adopt the TVP-SV-AR: It can adapt to such

changes in the data. It is nevertheless not surprising that the forecast errors tend to mimic

actual inflation during the early 1920s. It would perhaps be difficult for any time-series

model to predict the sharp deflation of 1921–1923. The one-year-ahead forecasts tend

to track πuk,t with a lag, as one would expect of an AR. Nevertheless, it is noteworthy

that the long-horizon forecast (shown in Figure 4) does not fluctuate in response to this

episode of deflation. The model thus features a steepening of the term structure of inflation

expectations as the posterior density of Etπuk,t+1 drops while that of µπ,t does not.

5.3. Predictability. To summarize the h-step-ahead predictability of sample inflation,

we use the R2
ht statistic proposed by Cogley, Primiceri, and Sargent (2010). This is 1

minus the ratio of the conditional variance to the unconditional variance. It lies between 0

and 1. For example, if πuk,t is completely unpredictable then the conditional variance and

unconditional variances will coincide, their ratio will be 1, and R2 = 0. Also note that the

statistics will go to zero as h→∞. Online Appendix D in the online supplement develops

the formula for these statistics for a TVP-SV-AR(n) and equations (1) and (2).

Figure 6 shows the median R2
ht statistics for πuk,t at horizons of 1, 2, 3, and 5 years,

with their 68% credible sets. The first, and central, finding is this: There is predictability
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at each horizon throughout the period. The Bayesian credible sets do not include zero at

any horizon and date. (The 16th quantiles vary from 0.004 to 0.006 at h = 3 and from

0.001 to 0.002 at h = 5 from the mid 1500s to the end of the 1800s.) Historical inflation

in the lower panel of Figure 1 appears very noisy, yet πuk,t exhibits predictability in every

year since the thirteenth century, especially at horizons of 1 and 2 years.

Second, median predictability at each horizon peaks in the mid 1970s. These peaks are

R2
1,1974 = 0.394 [0.230, 0.580], R2

2,1975 = 0.164 [0.051, 0.372], R2
3,1975 = 0.097 [0.019, 0.285],

and R2
5,1975 = 0.056 [0.007, 0.209], where 68% credible sets appear in brackets.

5.4. Price-Level Instability. Recall that puk,t denotes the log of the price level. We

next measure price-level uncertainty at time t and horizon h, defined as the variance

of accumulated inflation between t and t + h: vart(puk,t+h − Etpuk,t+h). Formulating

this measure involves first computing expected inflation and then finding the variance

around that forecast. Price-level instability is then defined—following Cogley and Sargent

(2015) and Cogley, Sargent, and Surico (2015)—as the total variation, and not just the

unpredictable variation.

At horizon h, instability is given by the square root of the sum of the conditional

variance and the squared, conditional mean:

(8)

√
vart (puk,t+h − Etpuk,t+h) + (Etpuk,t+h − puk,t)2

.

The TVPs make computing j-year ahead expected inflation difficult. We invoke a local

approximation inspired by the anticipated utility model (AUM) of Kreps (1998) as imple-

mented by Cogley and Sbordone (1998) and Cogley, Primiceri, and Sargent (2010). This

holds the parameters at their current realizations to forecast inflation. We then use the

TVP-SV-AR(n) of equations (1)–(5) to find the conditional mean of the log price level.

Calculating the variance of the forecast error is more complicated. The details are in

Online Appendix E.

Figure 7 reports on the posterior density of the instability measures (8) by graphing

the median and 68% credible set at each year. We show results for n = 3 and at horizons

h =1, 2, 3, and 5. (Results for the uncertainty measure on its own are similar to those for

SV shown in the lower right panel of Figure 4 and so are not shown separately.) Instability
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behaves similarly over time at each horizon, but its value is greater year by year at longer

horizons, as shown by the vertical axes in the four panels of Figure 7.

Instability is high during the first 300 years of the sample. At each horizon there are

local peaks in 1318, 1371, 1438, 1528, and 1547. The last of the early modern peaks is

in 1558, a year that saw a sharp deflation with πuk,1558 = −26%. This was the year of

Elizabeth I’s accession to the throne (with Thomas Gresham as her advisor), bringing an

end to the Tudor debasements, though debased coinage was not withdrawn until 1560.

Instability then trends down over time, but there are three noteworthy local peaks at

each horizon. The first of these peaks is in 1800, during the War of the Second Coalition.

In that year the inflation rate was 22%, the highest level of the era, as seen in the lower

panel of Figure 1.

Second, at each horizon there are several elevated levels of median instability during

World War I and in the early 1920s, a period of whipsawing inflation. Instability was

high in 1917, when the wartime inflation rate peaked at 21%. It also was high in 1920

(when πuk,1920 = 14%) and 1922, the second of two years of very sharp deflation with

πuk,1921 = −9% and πuk,1922 = −19%. This deflation followed the tightening of monetary

policy in 1920–1921. Howson (1973, 1974) described the basis for this policy decision.

Overall, this period from 1917 to 1922 exhibits the highest median instability of any year

after 1558, at each horizon.

The third modern peak is in 1975, a year that saw the peak inflation of the 1970s as

discussed earlier. While this peak in price-level instability also coincides with a local peak

in uncertainty and SV, in this case there is a larger role for (Etpuk,t+h − puk,t)2
which

also peaks in 1975. As already noted, the mid 1970s was an extraordinary period in UK

economic history that saw the IMF loan and the government’s attempt to control inflation

with wage and price controls.

Of course we are modelling only inflation and could list events associated with any

year. By listing some events that coincided with these peaks in price-level instability we

are not implying that we necessarily understand their causes but rather leaving questions

for future research.

Cogley, Sargent, and Surico (2015) study UK inflation from 1791 to 2011 using the
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unobserved components (UC) model of Stock and Watson (2007) complemented with an

AR(1) measurement-error process. Their model thus features a stochastic trend in true

inflation in the form of an unobserved, random walk. True inflation has two sources of

SV, one in the permanent component and one in an unpredictable transitory component.

Their model thus is not directly comparable to ours. (And we found it difficult to identify

the modern, UC model for earlier centuries, given that we found evidence against a unit

root in inflation in Table 1.) They also use the data assembled by Mitchell (1988) which

display higher and more volatile inflation rates during the Napoleonic Wars than do the

Clark data. Online Appendix A briefly describes the differences between these two series

and graphs them. And they report uncertainty and instability for horizons of 5 and 10

years.

Despite these differences in time span, model, data, and horizons, we nevertheless can

compare findings for the period after 1791. The two approaches both display local peaks

in price-level instability in 1800 and 1975 at each horizon. There are some differences in

the findings though, in both peaks and troughs. First, we find the highest post-1791 peak

in 1917–1922 rather than in the mid-1970s, for each horizon. Overall we find much more

evidence of price-level instability in the 1917–1922 period. Second, they find a trough at

around 1890 that is never matched in the 20th century (by the median or the inter-quartile

range). Possibly because our data now run to 2019, we find that median instability falls

late in our sample to values comparable to those in the 1890s. We also find relatively wide

68% credible sets late in our sample, though, which makes comparisons less possible. A

final difference of course is that we can estimate price-level instability since the 1250s to put

the values of the post-1791 period in context. As noted, we can compare the instability

of the 1920s or 1970s with that of the 13th to 17th centuries. Again, though, there is

considerable dispersion in these distributions throughout this span, so that the credible

sets sometimes overlap when comparing these periods.

6. Real Interest Rates

We next report implications for the history of real interest rates. We draw on the

expertise of Thomas and Dimsdale (2017) by using their series for nominal interest rates,
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which begin in 1695. Thus our measures of real rates will differ from theirs only because

of the measurement of inflation expectations.

The nominal short rate is series M9 from Thomas and Dimsdale (2017). They splice

together annual averages of the Bank Rate 1695–1972, Minimum Lending Rate 1972–1981,

Minimum Band 1 Dealing Rate 1981–1997, Repo Rate 1997–2006, and the Bank Rate,

2006–2017. We update it to 2019 from the Bank of England file baserates.xls. The long

nominal interest rate is series M10, the yield on perpetual annuities/consols. It connects

for 1703–1726 yields on new long-term issues, for 1727–1753 the yield on 3% perpetual

annuities, for 1756–2015 the yield on Consols, and for 2016–2019 the 20-year zero-coupon

yield. These nominal rates are shown in the top panels of Figure 8.

Thomas and Dimsdale’s real short rate is based on NIESR inflation forecasts from

1959 and a range of measures from 1996 onwards. Prior to 1959 expectations are equal to

realized inflation so the interest rate is an ex post one. Their measure of long-term inflation

expectations applies the Hodrick-Prescott filter (with a parameter of 100) to actual inflation

beginning in 1600. Notice also that their measure of inflation differs slightly from the Clark

measure, as documented in Online Appendix A. We refer to these two real interest rates

as the Bank of England series.

Our measures of inflation expectations are from the TVP-SV-AR(3) with equations

(1) and (2). From the nominal interest rates we subtract the ensemble of values for the one-

year ahead and long-horizon inflation forecasts, then plot the medians and the 90% credible

sets of these ex ante real rates. In Figure 8 the lower left panel shows the short-term real

rates and the lower right panel the long-term ones.

In comparing short-term, real interest rates in Figure 8, note first that the Bank of

England series is much more volatile than ours, a fact that is not surprising since it is

an ex post series for much of the sample. Until the 1880s it often lies outside the 90%

credible sets for our ex ante real interest rate. The two series coincide more closely after

that, except that the troughs in the Bank of England series are deeper than ours in the

early 20th century. Both series reach their 20th-century peak in 1922, following the sharp

monetary contraction of 1920–1921. In the Bank of England series comparably high values

occur in the 18th and 19th centuries. A striking difference, therefore, is that 1922 marks
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the highest value for the entire 1695–2019 period for our ex ante, short-term, real rate. The

median, real short rate rises from 0.11% in 1920 to 9.3% in 1921 and 11.7% in 1922 and

does not fall below 2% until 1933. Notice also the median is negative during 1915–1918,

1935–1937, 1939–1952, at several times during the 1970s, and then also from 2009–2019.

Long-term real rates are shown in the lower left panel of Figure 8. It is interesting

that the median of our series peaks in 1974, at the same time as the nominal rate and

before the 1990 peak in the Bank of England series. This median long rate rises above

3% in 1968, peaks at 11.1% in 1974, and remains above 3% until 1998. But there is more

uncertainty associated with the long-term real rate than the short-term real rate. For

example, the Bank series lies within our 90% credible sets over the last 40 years while the

90% Bayesian credible sets of our long-term real rate cover zero from 1884 to 1973 and from

1997 to 2019. And of course there are other sources of information on long-horizon inflation

expectations for the late 20th century, including surveys and market-based measures. Thus

we emphasize earlier periods and those for which the differences between the two series are

the largest.

For the late 18th and early 19th centuries the Bank of England long-term real rate is

well below our credible sets, a pattern which is then reversed for several years after 1815.

Our long-horizon inflation forecasts do not react as much as the HP-filtered inflation series

does to the inflation during the Napoleonic Wars. Thus we do not estimate there to have

been a sharp fall then rise in the long-term real rate during the early decades of the 19th

century. A similar difference appears for the early 20th century. The inflation of World

War I and deflation of the 1920s lead to large swings in the Bank of England series that

lie outside our credible sets, and our median estimate is smoother. In particular, the Bank

of England series is negative during both World Wars and again in the 1970s while our

estimates of the median, long-term real interest rate are not.

Hamilton et al. (2016) study the short-term real interest rate for a large panel of

countries that includes the UK since 1858. Borio et al. (2022) construct short-term

and long-term (10-year) real interest rates for the UK and other countries since 1870.

These studies model inflation expectations using an AR(1) model with a rolling multi-year

window. Since the late 19th century they show a sawtooth pattern in the real interest
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rate, as it trends down, then up, then down again. Figure 8 shows the same pattern for

our estimates of UK real rates at both maturities, concluding with very low or negative

estimates at the end of the sample. The median estimate of the long real rate is negative

for 1945–1947, 1949, and from 2015 to 2019.

These two studies just cited carefully examine a range of explanations for movements

in real interest rates. Our paper extends real interest rate measures back in time a further

175 years to 1695 and uses a TVP-SV-AR to represent expected inflation, two features

that we hope will make the results useful in further studies of secular trends in real interest

rates.

7. Conclusion

We provide a statistical model that offers a window on the work of economic historians

—principally Clark (2020)—who have assembled price indexes for the UK (and earlier

England) since the thirteenth century. The model allows for measurement error that

varies across spans corresponding to different underlying data sources. The TVP-SV-AR

model describes the dynamics of inflation using a single model for the entire period, with

slowly-evolving parameters and no need for structural break tests. This statistical method

seems well-suited to studies in economic history. It allows us to estimate and compare the

statistical properties of inflation for periods that are centuries apart.

A central finding is that there is a single, Hokusai-scale wave in historical, long-horizon

inflation forecasts, occurring in the 20th century. When looking at the history of the price

level or inflation in Figure 1, it is tempting to speculate about the social and economic

changes that contributed to this wave, perhaps including the nature of World War I finance,

the extension of the franchise after 1918, and/or a broader set of social insurance programs

in the 1920s. But recall that Figure 4 shows inflation persistence rising throughout the 19th

century and the long-horizon forecast turning up before 1914. We also found a tendency

for stochastic volatility in inflation to fall, well before the 20th century.

Despite the noisiness that seems apparent in historical data, inflation is predictable

at horizons of 1, 2, 3 and 5 years for each year since 1251, as measured by the R2 statistic.

Price-level instability tends to decline over time, which puts the instability of the 20th
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century in historical context. But there are notable, local peaks in median estimates of

instability in 1558, 1800, 1917–1922, and 1975. For the 1695–2019 period we estimate that

a distinct, overall peak in the short-term real interest rate occurred in 1922, following the

monetary contractions of 1920–1921. In contrast, the median long-term real interest rate

peaked in 1974, the same year in which inflation reached its highest value since the 1500s.
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Table 1. Unit Root Tests

Years DF-GLSu QT

πuk,t puk,t πuk,t puk,t

Full Sample 1245–2019 -22.273 3.011 0.108 147.424

Four Quarters 1245–1439 -13.231 -3.513 0.338 4.430

1440–1633 -12.921 0.147 0.375 92.241

1634–1827 -11.342 -0.837 0.326 19.149

1828–2019 -5.471 0.759 0.960 93.633

Post-WWI 1919–2019 -4.549 -0.425 1.542 84.246

Post-WWII 1946–2019 -2.977 -0.567 2.879 36.429

Notes: The table shows Elliott (1999) DF−GLSu and QT test statistics for a unit root

in the inflation rate πuk,t and the log price level puk,t for the entire sample, for each

quarter of the sample, and for subsamples after 1919 and after 1946. The lag length

is selected by the BIC. A constant is included. The lag lengths, test statistics, and

critical values are obtained using the RATS-Estima procedure erstest.src. Evidence

against the unit root appears in the left tail of each distribution. For DF−GLSu

some asymptotic critical values are -3.28 (1%), -2.98 (2.5%), -2.73 (5%), and -2.46

(10%). For QT these are 3.06 (1%), 3.80 (2.5%), 4.65 (5%), and 5.94 (10%). Overall

there is evidence of a unit root in the price level but not in the inflation rate, which

supports modelling the inflation rate as a stationary series over these spans of annual

data.
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Table 2. Priors on the Measurement Error

πuk,t = πt +mt

mt =
√
βτσuut ut ∼ N (0, 1)

Prior Parameters

Measurement-Error Parameters Distribution θ1 θ2

Measurement-error Volatility σ2
u IG ψuTu σ2

PR

Adjustment β2 (1870–1914) Beta 5 3

Adjustment β3 (1915–1946) Beta 3 5

Notes: The subsample indicator τ defines Beta priors placed on two elements of the vector of adjustment

factors, βτ , attached to the scale volatility, σ2
u, of measurement error. The vector is βτ =

[
β1 β2 β3 β4

]′
.

We normalize β1=1 for 1251–1869 and set β4 to zero for 1947–2019 to be consistent with Cogley, Sargent,

and Surico (2015). Our priors on the remaining measurement error adjustment parameters are β2 ∼ Beta

(5.0, 3.0) for 1870–1914 β3 ∼ Beta (3.0, 5.0) for 1915–1946. These priors imply coverage intervals for β2 =

[0.341, 0.636, 0.871] and β3 = [0.129, 0.364, 0.659] at the 5th, 50th and 95th quantiles. The scale volatility

parameter is endowed with an IG prior. The prior is parameterized as θ1 = ψuTu and θ2 = σ2
PR, where

ψu = 0.430×10−2, Tu = 696 = T−(2019−1947+1), and σ2
PR = 0.211142. The scale parameter θ2 is equated

to the variance of UK inflation on the Bank of England OBRA dataset from 1209 to 1244; see Thomas

and Dimsdale (2017). The median of this prior is 0.018 with 5th and 95th quantiles of 0.007 and 0.072.
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Table 3. Priors on the TVP-SV-AR(n)s

πt = α0,t +

n∑
i=1

αi,tπt−i + ξtεt, εt ∼ N (0, 1),

αt ≡ {α0,t, α1,t, α2,t, . . . , αn,t},

αt = αt−1 + ηt, ηt ∼ N
(
0n+1, Ωη

)
,

ln ξ2
t = ln ξ2

t−1 + σφφt, φt ∼ N
(
0, 1

)
.

Prior Parameters

Initial Model Parameters Distribution θ1 θ2

α0, Initial Intercept and Lags of AR
(
n
)

MN α Ωα

Ωη, Covariance Matrix of Innovations to αt IW n+2 κnΩα

ln ξ2
0 , Initial SV of πt Regression Error LN κξξ

2

n
1.0

σ2
φ, Scale Variance of Innovations to ln ξ2

1 IG 0.5ν 0.5ς

Notes: Columns under θ1 and θ2 are parameters of the prior distributions. A multivariate normal (MN )

prior is placed on the initial intercept and lag coefficients α0 of the TVP-SV-AR(n)s, n = 1, ..., 6, of the

UK inflation data. Fixed coefficient AR(n)s are estimated by ordinary least square (OLS) on the sample

from 1251 to 2019 to set the prior mean, α. The OLS covariance matrix of these parameters is the source of

Ωα. Its initial draw is from an inverse-Wishart (IW) distribution with n+2 degrees of freedom and a scale

matrix κnΩ
α

. The scalar κn is chosen to achieve acceptance rates for αt between 50 and 60 percent across

n = 1, ..., 6. The initial regression error SV, ln ξ20 , is endowed with a log normal prior, LN
(

ln
(
κξξ

2
n

)
−

0.5, 1.0
)
, where ξ2

n
is set to the OLS estimates of the variances of the residuals of the AR(n)s and κξ =

75.0. The prior on the scale variance, σ2
φ, is inverse-gamma (IG) with shape parameter equal to half of ν

= 2 and a scale parameter equal to half of ς = 0.123. This prior is equivalent to a (univariate) random

variable distributed IW with two degrees of freedom and a scale variance of ς. See Online Appendix C for

further details.
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Table 4. Evaluation of Fit of the TVP-SV-AR(n)s

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

ln MDD 638.21 643.18 673.62 667.59 652.72 650.82

WAIC -1431.95 -1457.55 -1487.87 -1483.30 -1487.75 -1465.82

Notes: The first row contains log marginal data densities, ln MDDs, of the TVP-SV-AR(n)s. The modi-

fied harmonic mean estimator of Geweke (2005) is employed to calculate the MDDs. The MDDs represent

evidence the data have about the TVP-SV-AR(n)s. The second row reports the Widely Applicable Infor-

mation Criterion (WAIC) developed by Watanabe (2010). The WAIC, also referred to as the Watanabe-

Akaike-IC, is an estimate of the predictive loss of a TVP-SV-AR(n). This notion of predictive loss equals

twice the difference between the sum of the posterior variances of the log predictive likelihoods and the

mean of the log predictive likelihoods following the advice of Gelman et al (2014). Estimates of the like-

lihoods are obtained from the predictive steps of the Kalman filter. The sum of the posterior variances

of the likelihood is an estimate of the effective dimension of the parameter vector of the TVP-SV-AR(n)s,

which serves as the penalty term of the WAIC.
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Figure 1: The UK Price Level and Inflation, 1251–2019

Notes: The top panel display the natural log of the UK price level, puk,t = ln
(
Puk,t

/
100

)
. The bottom panel plots the inflation rate of

UK price series, πuk,t = puk,t − puk,t−1.
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Figure 2: Ten-, Twenty-, and Thirty-Year Moving Averages of UK Inflation

Notes: The top panel contains the 10-year moving average (MA) of UK inflation, π10,uk,t , from 1254 to 2019 surrounded by shadings
that are 68% Newey-West confidence bands computed with one lag. Two lags are used to construct the 68% Newey-West confidence
bands of the 20-year MA of UK inflation, π20,uk,t , that begins in 1264 and ends in 2019 and appear in the middle panel. The 30-year
MA of UK inflation, π30,uk,t , is on a 1274–2019 sample, are displayed in the bottom panel, and relies on three lags to calculate 68%
Newey-West confidence bands.
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Figure 3: Measurement Error Parameter Densities and Smoothed States

Notes: Prior and posterior densities of the βτs appear in the top row of panels, τ = 1870-1914 and 1915-1946. The (olive) solid lines are posterior
densities. The densities are constructed using a normal kernel and methods described by Silverman (1986). Posterior densities are the solid (olive)
lines. The (turquoise) dot-dash lines are densities of the prior distributions. The latter distributions are simulated using the priors for the βτs
listed in table 2. The median of the posterior of smoothed measurement error, mt , is the solid (red) line in the bottom left panel. Surrounding mt

are (pink) shadings, which are 68% uncertainty bands. The bottom right panel plots πuk,t , as the solid green line, the median of the posterior of
smoothed true inflation, πt , is the dotted (magenta) line, and (orchid) shadings represent 68% confidence bands.
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Figure 4: Posterior Moments of the TVP-SV-AR(3) on UK Inflation, 1251–2019

Notes: The top left panel contains the posterior median of the time-varying intercept, α0,t . The posterior median of the sum of the lag
TVPs,

∑3
ℓ=1αℓ,t , is found in the top right panel. A plot of the time-varying conditional mean of UK inflation is depicted in the bottom

left panel as the posterior median of µπ,t = α0,t
/(

1 −
∑3
ℓ=1αℓ,t

)
. The SV of UK inflation is displayed in the bottom right panel. The

four panels also display shadings that are 68% Bayesian credible sets (i.e., 16% and 84% quantiles) of the TVPs and SV.
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Figure 5: 1-Year Ahead Expected UK Inflation and Its Ex Post Forecast Error, 1251–2019

Notes: The top panel plots median 1-year ahead expected UK Inflation, Etπuk,t+1. Expected inflation is estimated using the Kalman
filter, πuk,t , and the posterior distribution of the TVP-SV-AR

(
3
)

with measurement error. The bottom panel contains the ex post
forecast error, πuk,t+1 − Etπuk,t+1. The panels also contain shadings that are 90% Bayesian credible sets (i.e., 5% and 95% quantiles).
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Figure 6: Predictability of UK Inflation 1-, 2-, 3-, and 5-Years Ahead, 1251–2019

Notes: The top left panel plots the median 1-year ahead R-square statistic, R2
1t , which is computed as described in appendix D, from

1251 to 2019. The shadings around R2
1t are 68% Bayesian credible sets. Similarly, median R2

2t , R
2
3t , and R2

5t appear in the top right,
bottom left, and bottom right panels along with 68% Bayesian credible sets as the shadings. The R2

ht statistics are computed using the
posterior distribution of the TVP-SV-AR

(
3
)

with measurement error.
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Figure 7: UK Price-Level Instability, 1251–2019

Notes: The top left panel plots the median of the 1-year ahead square root of the sum of the conditional variance and the squared,

conditional mean,
√

vart
(
puk,t+1 − Etpuk,t+1

)
+
(
Etpuk,t+1 − puk,t

)2
, from 1251 to 2019; see section 5.4 and appendix E for details. The

shadings around this statistic are 68% Bayesian credible sets. The median 2-, 3-, and 5-year ahead price-level stability statistics are
displayed in the top right, bottom left, and bottom right panels along with shadings that are 68% Bayesian credible sets. The price-level
stability statistics are computed using the posterior distribution of the TVP-SV-AR

(
3
)

with measurement error.
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Figure 8: UK Nominal and Real Short- and Long-Term Interest Rates

Notes: The top row plots UK nominal short- and long-term interest rates; see section 6 for details. The bottom row depicts ex ante
short- and long-term real rates, rNS,i,t = RBofE,i,t − Etπuk,t+1, in the left and right panels, where i = S(short) and L(long). The rNS,S,t(
rNS,L,t

)
begins in 1695 (1703) and ends in 2019. One-year ahead expected UK inflation is computed on the posterior distribution of

the TVP-SV-AR
(
3
)

with measurement error. In the bottom row of panels, the shadings are 90% Bayesian credible sets.
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