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and Queen’s University

Asymptotic properties of the local Whittle estimator in the nonstationary
case (d > 1

2 ) are explored. For 1
2 < d ≤ 1, the estimator is shown to be

consistent, and its limit distribution and the rate of convergence depend on
the value of d . For d = 1, the limit distribution is mixed normal. For d > 1
and when the process has a polynomial trend of order α > 1

2 , the estimator is
shown to be inconsistent and to converge in probability to unity.

1. Introduction. Semiparametric estimation of the memory parameter (d)
in fractionally integrated [I (d)] time series has attracted much recent study and
is attractive in empirical applications because of its general treatment of the
short memory component. Two commonly used semiparametric estimators are
log periodogram (LP) regression and local Whittle estimation. LP regression is
popular mainly because of the simplicity of its construction as a linear regression
estimator. Local Whittle estimation involves numerical methods but is more
efficient than LP regression. The local Whittle estimator was proposed by Künsch
(1987) and Robinson (1995) showed its consistency and asymptotic normality
for d ∈ (−1

2 , 1
2 ). Velasco (1999) extended Robinson’s results to show that the

estimator is consistent for d ∈ (−1
2 ,1) and asymptotically normally distributed

for d ∈ (−1
2 , 3

4 ).
The present paper studies the asymptotic properties of the local Whittle

estimator in the nonstationary case for d > 1
2 , including the unit root case

and the case where the process has a polynomial time trend. These cases are
of high importance in empirical work especially with economic time series,
which commonly exhibit nonstationary behavior and show some evidence of
deterministic trends as well as long range dependence. The asymptotic properties
of the local Whittle estimator in the nonstationary case over the region d ∈ (1

2 ,1)

were explored in Velasco (1999). Velasco also showed that, upon adequate tapering
of the observations, the region of consistent estimation of d may be extended
but with corresponding increases in the variance of the limit distribution. For the
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region d ≥ 1, there is presently no theory for the untapered Whittle estimator
and, for the region d ∈ (3

4 ,1), no limit distribution theory. The unit root case is
of particular interest because it stands as an important special case of an I (d)

process with d = 1 and it has played a central role in the study of nonstationary
economic time series. It is also now known to be the borderline that separates
cases of consistent and inconsistent estimation by LP regression [Kim and Phillips
(1999)] and, as we shall show here, local Whittle estimation.

This paper demonstrates that the local Whittle estimator (i) is consistent for
d ∈ (1

2 ,1], (ii) is asymptotically normally distributed for d ∈ (1
2 , 3

4), (iii) has a non-
normal limit distribution for d ∈ [3

4 ,1), (iv) has a mixed normal limit distribution
for d = 1, (v) converges to unity in probability for d > 1 and (vi) converges to
unity in probability when the process has a polynomial time trend of order α > 1

2 .
The present paper, therefore, complements the earlier work of Robinson (1995)
and Velasco (1999) and largely completes the study of the asymptotic properties
of the local Whittle estimator for regions of d that are empirically relevant in most
applications. The paper also serves as a counterpart to Phillips (1999b) and Kim
and Phillips (1999), which analyze the asymptotics of LP regression for d ∈ (1

2 ,2).
The approach in the present paper draws on an exact representation and

approximation theory for the discrete Fourier transform (d.f.t.) of nonstationary
fractionally integrated processes. The theory, developed by Phillips (1999a),
employs a model for nonstationary fractionally integrated processes that is valid
for all values of d and provides a uniform apparatus for analyzing the asymptotic
behavior of their d.f.t.’s.

The remainder of the paper is organized as follows. Section 2 introduces
the model. Consistency of the local Whittle estimator for d ∈ (1

2 ,1] and its
inconsistency for d > 1 are demonstrated in Section 3. Section 4 derives the limit
distributions. Results for fractionally integrated processes with a polynomial time
trend are given in Section 5. Section 6 reports some simulation results and gives an
empirical application using economic data. Section 7 makes some brief remarks on
the important practical issue of finding a good general purpose estimator of d when
nonstationarity in the data is suspected. Some technical results are collected in
Appendix A. Proofs are given in Appendix B.

2. Preliminaries. We consider the fractional process Xt generated by the
model

(1 − L)d(Xt − X0) = ut, t = 0,1,2, . . . ,(1)

where X0 is a random variable with a certain fixed distribution. Our interest is in
the case where Xt is nonstationary and d > 1

2 , so in (1) we work from a given
initial date t = 0, set ut = 0 for all t ≤ 0 and assume that ut , t ≥ 1, is stationary
with zero mean and spectral density fu(λ). Expanding the binomial in (1) gives
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the form
t∑

k=0

(−d)k

k! (Xt−k − X0) = ut ,(2)

where

(d)k = �(d + k)

�(d)
= (d)(d + 1) · · · (d + k − 1)

is Pochhammer’s symbol for the forward factorial function and �(·) is the gamma
function. When d is a positive integer, the series in (2) terminates, giving the usual
formulae for the model (1) in terms of the differences and higher order differences
of Xt . An alternate form for Xt is obtained by inversion of (1), giving a valid
representation for all values of d ,

Xt = (1 − L)−dut + X0 =
t−1∑
k=0

(d)k

k! ut−k + X0.(3)

Define the discrete Fourier transform and the periodogram of a time series at

evaluated at the fundamental frequencies as

wa(λs) = 1√
2πn

n∑
t=1

ate
itλs , λs = 2πs

n
, s = 1, . . . , n,

Ia(λs) = |wa(λs)|2.
(4)

The model (1) is not the only model of nonstationary fractional integration.
Another model that is used in the literature forms a process Xt with d ∈ [1

2 , 3
2 )

from the partial sum of a stationary long-range dependent process, as in

Xt =
t∑

k=1

Uk + X0, d ∈ [ 1
2 , 3

2

)
,(5)

where Ut has spectral density f (λ) ∼ G0λ
−2(d−1) as λ → 0. Model (5) applies for

the specific range of values d ∈ [1
2 , 3

2 ) and this can be extended by repeated use of
partial summation in the definition. Model (1) directly provides a valid model for
all values of d . Some interest in (1) has already been shown in the literature [e.g.,
Marinucci and Robinson (2000) and Robinson and Marinucci (2001)].

3. Local Whittle estimation: consistency for d ≤ 1 and inconsistency for
d > 1. Local Whittle (Gaussian semiparametric) estimation was developed by
Künsch (1987) and Robinson (1995). Specifically, it starts with the following
Gaussian objective function, defined in terms of the parameter d and G:

Qm(G,d) = 1

m

m∑
j=1

[
log(Gλ−2d

j ) + λ2d
j

G
Ix(λj )

]
,(6)
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where m is some integer less than n. The local Whittle procedure estimates
G and d by minimizing Qm(G,d), so that

(Ĝ, d̂) = arg min
G∈(0,∞),d∈[�1,�2]

Qm(G,d),

where �1 and �2 are numbers such that −1
2 < �1 < �2 < ∞. It will be

convenient in what follows to distinguish the true values of the parameters by the
notation G0 = fu(0) and d0. Concentrating (6) with respect to G as in Robinson
(1995) gives

d̂ = arg min
d∈[�1,�2]

R(d),

where

R(d) = log Ĝ(d) − 2d
1

m

m∑
1

logλj ,

Ĝ(d) = 1

m

m∑
1

λ2d
j Ix(λj ).

We now introduce the assumptions on m and the stationary component ut in (1).

ASSUMPTION 1.

fu(λ) ∼ fu(0) ∈ (0,∞) as λ → 0 + .

ASSUMPTION 2. In a neighborhood (0, δ) of the origin, fu(λ) is differentiable
and

d

dλ
log fu(λ) = O(λ−1) as λ → 0 + .

ASSUMPTION 3.

ut = C(L)εt =
∞∑

j=0

cj εt−j ,

∞∑
j=0

c2
j < ∞,(7)

where E(εt |Ft−1) = 0, E(ε2
t |Ft−1) = 1 a.s., t = 0,±1, . . . , in which Ft is the

σ -field generated by εs , s ≤ t , and there exists a random variable ε such that
Eε2 < ∞ and for all η > 0 and some K > 0, Pr(|εt | > η) ≤ K Pr(|ε| > η).

ASSUMPTION 4.

1

m
+ m

n
→ 0 as n → ∞.
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Assumptions 1–3 are analogous to Assumptions A1–A3 of Robinson (1995).
However, we impose them in terms of ut rather than Xt . Assumption 4 is the same
as Assumption A4 of Robinson (1995).

Lemma A.1(a) in Appendix A gives the following expression for wx(λs):

wx(λs) = Dn(e
iλs ; θ)

1 − eiλs
wu(λs)

(8)

− eiλs

1 − eiλs

Xn − X0√
2πn

− 1

1 − eiλs

Ũλsn(θ)√
2πn

.

Neglecting the third term of (8) as a remainder, wx(λs) is seen to comprise
two terms—a function of the d.f.t. of ut and a function of Xn. As the value
of d changes, the stochastic magnitude of the two components changes, and
this influences the asymptotic behavior of wx(λs). When d < 1, the first
term dominates the second term and wx(λs) behaves like λ−d

s wu(λs), being
asymptotically uncorrelated for different frequencies. When d > 1, the second
term becomes dominant and wx(λs) behaves like λ−1

s (Xn − X0)/
√

2πn, being
perfectly correlated across all λs . This switching behavior of wx(λs) at d = 1 is a
key determinant of the asymptotic properties of the local Whittle estimator, as well
as other procedures like LP regression. When d = 1, the two terms have the same
stochastic order and this leads to a form of asymptotic behavior that is particular
to this case.

Theorem 3.1 below establishes that d̂ is consistent for d0 ∈ (1
2 ,1] and hence

consistency carries over to the unit root case. While Ĝ is consistent for d0 ∈ (1
2 ,1),

however, it is inconsistent and tends to a random quantity when d0 = 1.

THEOREM 3.1. Suppose Xt is generated by (1) with d0 ∈ [�1,�2] and

Assumptions 1–4 hold. Then, for d0 ∈ (1
2 ,1], d̂

p→ d0 as n → ∞, and

Ĝ(d̂)
d→

{
G0, for d0 ∈ (1

2 ,1
)
,

G0(1 + χ2
1 ), for d0 = 1.

When d0 > 1, d̂ manifests very different behavior. It converges to unity in
probability and the local Whittle estimator becomes inconsistent. So the local
Whittle estimator is biased downward even in very large samples whenever the
true value of d is greater than unity. Kim and Phillips (1999) showed that the LP
regression estimator also converges to unity when d0 > 1.

THEOREM 3.2. Under the same conditions as Theorem 3.1, for d0 ∈ (1,M]
with 1 < M < ∞, d̂

p→ 1 as n → ∞.

REMARK 3.3. Velasco (1999) showed that d̂ is consistent for d0 ∈ (1
2 ,1)

using the model (5). We conjecture that our consistency and inconsistency results
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for the local Whittle estimator for d0 = 1 and d0 ∈ (1, 3
2 ) continue to hold

under (5).

4. Local Whittle estimation: asymptotic distribution. We introduce some
further assumptions that are used in the results of this section.

ASSUMPTION 1′. For some β ∈ (0,2],
fu(λ) = fu(0)

(
1 + O(λβ)

)
, fu(0) ∈ (0,∞) as λ → 0 + .

ASSUMPTION 2′ . In a neighborhood (0, δ) of the origin, C(eiλ) is differen-
tiable and

d

dλ
C(eiλ) = O(λ−1) as λ → 0 + .

ASSUMPTION 3′. Assumption 3 holds and also

E(ε3
t |Ft−1) = µ3,

E(ε4
t |Ft−1) = µ4 a.s., t = 0,±1, . . . ,

for finite constants µ3 and µ4.

ASSUMPTION 4′. As n → ∞,

1

m
+ m1+2β(log m)2

n2β
→ 0.

ASSUMPTION 5′. Uniformly in k = 0,1, . . . ,∑
j≥k

γj = O
((

log(k + 1)
)−4)

,
∑
j≥k

cj = O
((

log(k + 1)
)−4)

,

γj ≡ Eutut+j .

ASSUMPTION 6′ . For the same β ∈ (0,2] as in Assumption 1′ and λ,λ′ ∈
(−δ, δ), ∣∣C(eiλ) − C

(
eiλ′)∣∣ ≤ C|λ − λ′|min{β,1}, C ∈ (0,∞).

Assumptions 1′–4′ are analogous to Assumptions A1′–A4′ of Robinson (1995),
except that our assumptions are in terms of ut rather than Xt . When d0 ∈ (1

2 ,1),
we need an additional assumption, Assumption 5′, that controls the behavior
of the tail sum of cj and γj . This assumption seems to be fairly mild. For
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instance, consider the stationary Gegenbauer process proposed by Gray, Zhang
and Woodward (1989):

ut = (1 − 2aL + L2)−bεt = C(L)εt ,

t = 0,±1,±2, . . . ,

with |a| < 1 and b ∈ (0, 1
2). Its spectral density is fu(λ) = {4(cosλ − a)2}−b/2π ,

which has a fractional pole at λ0 = cos−1 a. The asymptotic approximations for
cj and γj are given by [Gray, Zhang and Woodward (1989), pages 236–238]

cj ∼ �1(a, b) cos{(j + b)λ0 − bπ/2}jb−1,
(9)

γj ∼ �2(a, b)j2b−1 sin(πb − jλ0),

as j → ∞, where �1(a, b) and �2(a, b) do not depend on j . Since cj and ρj

satisfy Assumption 5′ [Zygmund (1959), Theorem 2.2, page 3], Assumption 5′
allows for a pole and discontinuity in fu(λ) at λ 
= 0. However, Assumption 5′ is
not satisfied if γk = (k + 1)−1(log(k + 1))−4. When d0 = 1, Assumption 5′
is not necessary, but instead we need Assumption 6′. It requires C(eiλ) to be
Lip(min{β,1}) in the neighborhood of the origin.

The following theorems establish the asymptotic distribution of the local
Whittle estimator for d0 ∈ (1

2 ,1]. When d0 ∈ (1
2 , 3

4), d̂ is asymptotically normally
distributed, but d̂ has a nonnormal limit distribution and slower rate of convergence
when d0 ∈ [3

4 ,1). This phenomenon occurs because, when d0 is large, the
stochastic magnitude of Xn in the representation (8) becomes so large that it
dominates the behavior of d̂ .

THEOREM 4.1. Suppose Xt is generated by (1) with d0 ∈ (�1,�2) and
Assumptions 1′–5′ hold. Then

m1/2(d̂ − d0)
d→ 1

2U for d0 ∈ (1
2 , 3

4

)
,

m1/2(d̂ − d0)
d→ 1

2U + J (d0)W
2 for d0 = 3

4 ,

m2−2d0(d̂ − d0)
d→ J (d0)W

2 for d0 ∈ (3
4 ,1

)
,

where J (d0) = (2π)2d0−2�(d0)
−2(2d0 − 1)−3(1 − d0) and U and W are mutually

independent N(0,1) random variables.

When d0 = 1 the two main components of wx(λs), that is, wu(λs) and
Xn/

√
2πn, have the same stochastic magnitude, and the limit distribution of

the local Whittle estimator turns out to be mixed normal (denoted as MN).
Intriguingly, the variance of d̂ becomes smaller than the case where d0 < 1, as
was found in the corresponding case for LP regression [Phillips (1999b)].
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THEOREM 4.2. Suppose Xt is generated by (1) with d0 = 1 ∈ (�1,�2) and
Assumptions 1′–4′ and 6′ hold. Then

m1/2(d̂ − d0)
d→ MN

(
0, σ 2(W)

)
≡

∫ ∞
−∞

N
(
0, σ 2(h)

)
φ(h)dh,

where W is N(0,1), φ(·) is standard normal p.d.f. and

σ 2(h) = 1

4

1 + 2h2

1 + 2h2 + h4 .

REMARK 4.3. (a) When d0 = 1, the variance of the limit distribution of
m1/2(d̂ − d0) is less than 1

4 since σ 2(h) ≤ 1
4 almost surely. Numerical evaluation

gives

σ 2
d = 1

4

∫ ∞
−∞

1 + 2h2

1 + 2h2 + h4

1√
2π

exp
(
−h2

2

)
dh

= 0.2028.

Thus, the limit distribution of the local Whittle estimator has less dispersion when
d0 = 1 than it does in the stationary and d0 ∈ (1

2 , 3
4) cases. A similar phenomenon

applies in the limit theory for LP regression, where again the limit distribution is
mixed normal when d0 = 1 [Phillips (1999b)].

(b) Velasco (1999) shows asymptotic normality of the estimator for d0 ∈ (1
2 , 3

4 )

using the model (5). We conjecture that the estimator has the same asymptotic
distributions as those given above for d0 ∈ (3

4 ,1] under (5), possibly with different
J (d0), although the limit distribution for d0 = 3

4 might be difficult to derive.

5. Fractional integration with a polynomial time trend. In many appli-
cations, a nonstationary process is accompanied by a deterministic time trend.
Accordingly, this section extends the analysis above to fractional processes with
an α-order (α > 0) polynomial deterministic time trend. Specifically, the process
Xt is generated by the model

Xt = X0
t + X0 + µtα = (1 − L)−dut + X0 + µtα

=
t−1∑
k=0

(d)k

k! ut−k + X0 + µtα, t = 0,1,2, . . . , µ 
= 0,
(10)

where X0 and ut are defined as above. As shown in Appendix A, the d.f.t. of a
time trend takes the following form, uniformly for 1 ≤ s ≤ m with m = o(n):

wtα (λs) = 1√
2πn

n∑
t=1

tαeitλs

= − 1

1 − eiλs

nα

√
2πn

[1 + o(1)].
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[See also Corbae, Ouliaris and Phillips (2002), who give exact formulae for d.f.t.’s
of a time trend when α is a positive integer.] Therefore, neglecting the remainder
term and Ũλsn(θ), we obtain the following expression of wx(λs):

wx(λs) � − µ

1 − eiλs

nα

√
2πn

+ Dn(e
iλs ; θ)

1 − eiλs
wu(λs)

− eiλs

1 − eiλs

X0
n − X0√

2πn

� Cµλ−1
s nα−1/2

+ Op(λ−d
s ) + Op(λ−1

s nd−1).

(11)

When α > 1
2 , the second term in (11) is dominated by either the first term

(if α > d − 1
2 ) or the third term (if 1

2 < α < d − 1
2 ), and then wx(λs) behaves

like C(n)λ−1
s , where C(n) does not depend on s. As a result, d̂ converges to unity

in probability, and the local Whittle estimator is inconsistent except when the true
value d0 = 1. Since X0

n = Op(nd−1/2), this result might be regarded as an instance
of a deterministic trend dominating a stochastic trend when α > d − 1

2 . In the
present case, because the d.f.t. of a deterministic trend is governed by the final
observation, nα , the outcome for unfiltered, untapered data is the inconsistency
of d̂ . In consequence, some caution is needed in applying the Whittle estimator
to investigate the degree of long range dependence when a time series exhibits
trending behavior involving a deterministic trend of uncertain order. The same
result holds if the deterministic trend kt is fractionally integrated in the sense that
(1−L)αkt = I {t ≥ 1}, because then kn ∼ �(α+1)−1nα , as shown in Appendix A.

THEOREM 5.1. Suppose Xt is generated by (10) with d0 ∈ [�1,�2], α > 1
2 ,

and Assumptions 1–4 hold. Then, for d0 ∈ (1
2 ,M] with 1 < M < ∞, d̂

p→ 1
as n → ∞.

6. Simulations and an empirical application. First we report simulations
that were conducted to examine the finite sample performance of the local Whittle
estimator using (1) with ut ∼ i.i.d. N(0,1). All the results are based on 10,000
replications.

Table 1 shows the simulation results for d = 0.7 and d = 1.0. The sample size
and m were chosen to be n = 200, 500, 1000 and m = [n0.5]. The estimator is seen
to have smaller standard deviation when d = 1.0, corroborating the asymptotic
theory.

Figure 1 plots the empirical distribution of the estimator for d = 0.7, 0.9, 1.0,
1.5 when n = 500 and m = [n0.5]. The estimator appears to have a symmetric
distribution when d ≤ 1, and the positive bias and skewness of the limit distribution
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TABLE 1
Simulation results for d = 0.7 and d = 1.0

d = 0.7 d = 1.0

n bias s.d. t.s.d.∗ bias s.d. t.s.d.

200 0.0002 0.1977 0.1336 −0.0235 0.1779 0.1204
500 0.0093 0.1451 0.1066 −0.0129 0.1280 0.0960

1000 0.0101 0.1162 0.0898 −0.0102 0.1019 0.0809

∗t.s.d. denotes theoretical standard deviation.

for d = 0.9 are not evident for this sample size. When d > 1, distribution of the
estimator is concentrated around unity, again corroborating the asymptotic result.

As an empirical illustration, the local Whittle estimator was applied to the
historical economic time series considered in Nelson and Plosser (1982) and
extended by Schotman and van Dijk (1991). We also estimate d by first taking
differences of the data, estimating d − 1 and adding unity to the estimate d̂ − 1.
This procedure is consistent for 1

2 < d < 2 and invariant to a linear trend. Table 2
shows the estimates based on both m = n0.5 and m = n0.6. These series produce
long memory estimates over a wide interval that ranges from around 0.5 for the
unemployment rate to 1.38 for the bond yield. For the unemployment rate, the
local Whittle estimate from the raw data (d̂LW) and the local Whittle estimate from
the differenced data (d̂LWD) are very close together, both indicating only marginal
nonstationarity in the data. For the bond yield, d̂LWD is very different from d̂LW.
Especially for the GNP measures, industrial production and employment, the
presence of a linear trend component in the data [which is supported by much of
the empirical work with this data set following Nelson and Plosser (1982)] appears

FIG. 1. Densities of the local Whittle estimator: n = 500, m = n0.5.
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TABLE 2
Estimates of d for US economic data

m = n0.5 m = n0.6

n d̂LW d̂LWD d̂LW d̂LWD

Real GNP 62 0.990 0.626 0.946 0.719
Nominal GNP 62 0.983 0.901 0.930 0.909
Real per capita GNP 62 0.976 0.631 0.912 0.728
Industrial production 111 0.918 0.516 0.968 0.593
Employment 81 1.001 0.660 0.977 0.713
Unemployment rate 81 0.507 0.527 0.705 0.741
GNP deflator 82 1.143 0.973 1.049 1.099
CPI 111 1.020 1.227 0.828 1.176
Nominal wage 71 1.080 1.026 1.015 0.983
Real wage 71 1.105 0.785 1.030 0.822
Money stock 82 1.042 0.913 0.993 1.232
Velocity of money 102 1.055 0.932 0.970 0.782
Bond yield 71 0.676 1.261 0.740 1.370
Stock prices 100 0.914 0.860 0.984 0.755

to bias d̂LW heavily toward unity. These particular results indicate that, although
the local Whittle estimator is consistent for 1

2 < d ≤ 1, the use of differenced
data or even data tapering [Velasco (1999) and Hurvich and Chen (2000)] may
be preferable, unless the time series clearly does not involve a deterministic trend
and values of d > 1 are not suspected.

7. Concluding remarks. The results of the present paper have a negative
character, revealing that the local Whittle estimator is not a good general purpose
estimator when the value of d may take on values in the nonstationary zone
beyond 3

4 . The asymptotic theory is discontinuous at d = 3
4 and again at d = 1,

it is awkward to use and the estimator is inconsistent beyond unity.
This paper has not explicitly addressed the issue of what semiparametric esti-

mation procedure is a good general purpose procedure for possibly nonstationary
cases. Data differencing and data tapering have been explored [Velasco (1999) and
Hurvich and Chen (2000)], are easy to implement and have been shown to extend
the range of applicability of the local Whittle estimator. However, these approaches
do have some disadvantages, such as the need to determine the appropriate order
of differencing and the effects of tapering on variance. Another approach is to use
the exact form of the local Whittle estimator suggested in Phillips (1999a), which
does not rely on differencing or tapering. This estimator has recently been shown
by the authors [Shimotsu and Phillips (2002)] to be consistent and to have the
same N(0, 1

4) limit distribution for all values of d . While it is still too early for
a definitive answer to the question of what is a good general purpose semipara-
metric estimator of d that allows for nonstationarity, these approaches offer some
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useful alternatives for applied researchers, and the present paper is at least a cau-
tionary tale about performance characteristics of the local Whittle estimator in the
nonstationary environment.

APPENDIX A

Technical lemmas. In this and the following sections, x∗ denotes the complex
conjugate of x, and |x|+ denotes max{x,1}.

LEMMA A.1 [Phillips (1999a), Theorems 2.2 and 2.7]. (a) If Xt follows (1),
then

wx(λ)(1 − eiλ) = Dn(e
iλ; θ)wu(λ)

− einλ

√
2πn

Ũλn(θ) − eiλ

√
2πn

(einλXn − X0),
(12)

where Dn(e
iλ; θ) = ∑n

k=0
(−θ)k

k! eikλ, θ = 1 − d and

Ũλn(θ) = D̃nλ(e
−iλL; θ)un =

n−1∑
p=0

θ̃λpe−ipλun−p,

θ̃λp =
n∑

k=p+1

(−θ)k

k! eikλ.

(13)

(b) If Xt follows (1) with d = 1, then

wx(λ)(1 − eiλ) = wu(λ) − eiλ

√
2πn

(einλXn − X0).(14)

LEMMA A.2. For θ > −1 and uniformly in s = 1,2, . . . ,m with m = o(n),

Dn(e
iλs ; θ) = (1 − eiλs )θ + O(n−θ s−1).(15)

PROOF. We have

Dn(e
iλs ; θ) =

∞∑
0

(−θ)k

k! eikλs −
∞∑

n+1

(−θ)k

k! eikλs

(16)

= 2F1(−θ,1; 1; eiλs ) −
∞∑

n+1

k−θ−1

�(−θ)
eikλs + O

( ∞∑
n+1

k−θ−2

)
,

since (−θ)k/k! = �(−θ)−1k−θ−1(1 + O(k−1)) [Erdélyi (1953), page 47]. Be-
cause θ > −1 and s 
= 0, the first term in (16) converges and equals to (1 − eiλs )θ
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[Erdélyi (1953), page 57]. For the second term in (16), by Theorem 2.2 of
Zygmund [(1959), page 3] we have∣∣∣∣∣

∞∑
n+1

k−θ−1eikλs

∣∣∣∣∣
≤ (n + 1)−θ−1 max

N

∣∣∣∣∣
n+N∑
n+1

eikλs

∣∣∣∣∣
= O(n−θ s−1).

The third term in (16) is necessarily O(n−θ s−1) because
∑∞

n+1 k−θ−2 =
O(n−θ−1). �

LEMMA A.3. (a) λ−θ (1 − eiλ)θ = e−(π/2)θ i + O(λ) as λ → 0+.
(b) For θ > −1 and uniformly in s = 1,2, . . . ,m with m = o(n),

λ−θ
s Dn(e

iλs ; θ) = e−(π/2)θ i + O(λs) + O(s−1−θ ).(17)

PROOF. For (a), since |1−eiλ| = |2 sin(λ/2)| and arg(1−eiλ) = (λ−π)/2 for
0 ≤ λ < π , we can write (1−eiλ)θ in polar form as |2 sin(λ/2)|θ exp[iθ(λ−π)/2].
It follows that

λ−θ (1 − eiλ)θ = λ−θ (
λ + O(λ3)

)θ [exp(−iθπ/2) + O(λ)]
= e−(π/2)θ i + O(λ)

giving the stated result. Statement (b) follows from (a) and Lemma A.2. �

LEMMA A.4. Uniformly in p = 0,1, . . . , n − 1 and s = 1,2, . . . ,m with
m = o(n):

(a)

θ̃λsp =
{

O(|p|−θ+ ) = O(|p|d−1+ ), for θ > 0,

O(n−θ ) = O(nd−1), for θ ∈ (−1,0),
(18)

(b)

θ̃λsp = O(|p|−θ−1+ ns−1)
(19) = O(|p|d−2+ ns−1), for θ > −1.

PROOF. Observe

θ̃λsp = �(−θ)−1
n∑

p+1

k−θ−1eikλs + O

(
n∑

p+1

k−θ−2

)
.
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The required results follow from

n∑
p+1

k−θ−1 =
{

O(|p|−θ+ ), for θ > 0,

O(n−θ ), for θ ∈ (−1,0),

n∑
p+1

k−θ−2 ≤
n∑

p+1

k−θ−1,

∣∣∣∣∣
n∑

p+1

k−θ−1eikλs

∣∣∣∣∣ ≤ (p + 1)−θ−1 max
N

∣∣∣∣∣
p+N∑
p+1

eikλs

∣∣∣∣∣
= O(|p|−θ−1+ ns−1)

and
∑n

p+1 k−θ−2 = O(|p|−θ−1+ ). �

LEMMA A.5. (a) Under the assumptions of Theorem 3.1, we have the
following:

(a1) E
∣∣Ũλsn(θ)

∣∣2 = O
(
hns(θ)

)
,

(a2) E
(
Xn − X0 − C(1)Xε

n

)2 = o(n2d−1),

uniformly in s = 1,2, . . . ,m, where Xε
n = ∑n−1

k=0
(d)k
k! εn−k and

hns(θ) =


n1−2θ s2θ−1 = n2d−1s1−2d, for θ ∈ (−1

2 , 1
2

)
,

n1−2θ s2θ−1(log(s + 1)
)2

= n2d−1s1−2d
(
log(s + 1)

)2
, for θ = −1

2 .

(b) Under the assumptions of Theorem 4.1, we have, uniformly in s = 1, . . . ,m,

E
∣∣Ũλsn(θ) − C(1)̃ελsn(θ)

∣∣2
= O

(
n1−2θ s2θ−1(logn)−4 + n1−2θ s−2)

for θ ∈ (−1
2 , 1

2

)
.

PROOF. (a) We prove (a1) first. When θ = 0 the stated result follows
because Ũλsn(θ) = 0. When θ 
= 0 define ap = θ̃λspe−ipλs so that Ũλsn(θ) =∑n−1

p=0 apun−p. We suppress the dependence of ap on θ and λs . Summation by
parts gives

Ũλsn(θ) =
n−2∑
p=0

(ap − ap+1)

p∑
j=0

un−j + an−1

n−1∑
j=0

un−j .(20)
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Observe that

ap − ap+1

=
n∑

k=p+1

(−θ)k

k! ei(k−p)λs −
n∑

k=p+2

(−θ)k

k! ei(k−p−1)λs

=
n∑

k=p+1

(−θ)k

k! ei(k−p)λs −
n−1∑

l=p+1

(−θ)l+1

(l + 1)! ei(l−p)λs

=
n−1∑

k=p+1

[
(−θ)k

k! − (−θ)k+1

(k + 1)!
]
ei(k−p)λs + (−θ)n

n! e−ipλs

=
n−1∑

k=p+1

(1 + θ)�(k − θ)

�(−θ)�(k + 2)
ei(k−p)λs + (−θ)n

n! e−ipλs ,

where the fourth line follows from

(−θ)k

k! − (−θ)k+1

(k + 1)!
= − �(k − θ)

�(−θ − 1)�(k + 2)
= (1 + θ)�(k − θ)

�(−θ)�(k + 2)
.

Define

bnp =
n−1∑

k=p+1

(1 + θ)�(k − θ)

�(−θ)�(k + 2)
ei(k−p)λs ,

and then, since an−1 = ((−θ)n/n!)e−i(n−1)λs ,

Ũλsn(θ) =
n−2∑
p=0

bnp

p∑
j=0

un−j + (−θ)n

n!
n−2∑
p=0

e−ipλs

p∑
j=0

un−j

+ (−θ)n

n! e−i(n−1)λs

n−1∑
j=0

un−j

=
n−2∑
p=0

bnp

p∑
j=0

un−j + (−θ)n

n!
n−1∑
p=0

e−ipλs

p∑
j=0

un−j

= U1n + U2n.

We proceed to show that the U·n are of the stated order. First, for U1n we have

bnp = O
(
min{|p|−θ−1+ , |p|−θ−2+ ns−1})(21)
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uniformly in p = 0, . . . , n − 1 and s = 1, . . . ,m. Equation (21) holds because

bnp = 1 + θ

�(−θ)
e−ipλs

n−1∑
k=p+1

k−θ−2eikλs + O

(
n−1∑
p+1

k−θ−3

)

and
n−1∑
p+1

k−θ−2 = O(|p|−θ−1+ ),

n−1∑
p+1

k−θ−3 = O(|p|−θ−2+ ),

∣∣∣∣∣
n−1∑
p+1

k−θ−2eikλs

∣∣∣∣∣ ≤ (p + 1)−θ−2 max
N

∣∣∣∣∣
p+N∑
p+1

eikλs

∣∣∣∣∣
= O(|p|−θ−2+ ns−1).

Next,

E

( p∑
0

un−j

)2

(22)

= (p + 1)

p∑
−p

(
1 − |j |/(p + 1)

)
γj = O(|p|+), γj ≡ Eutut+j ,

for p = 0, . . . , n − 1, and it follows from Minkowski’s inequality that

E|U1n|2 = O

((
n−2∑
p=0

|bnp||p|1/2
+

)2)

= O

(( n/s∑
p=0

|p|−θ−1/2
+ +

n∑
p=n/s

p−θ−3/2ns−1

)2)

=
O(n1−2θ s2θ−1), θ ∈ (−1

2 , 1
2

)
,

O
(
n1−2θ s2θ−1(log(s + 1)

)2)
, θ = −1

2 .

For U2n, we rewrite the sum as

U2n = (−θ)n

n!
n−1∑
p=0

e−ipλs

p∑
j=0

un−j

= (−θ)n

n!
n∑

n−p=1

ei(n−p)λs

n∑
n−j=n−p

un−j
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= (−θ)n

n!
n∑

k=1

uk

k∑
q=1

eiqλs

= (−θ)n

n!
n∑

k=1

uk

eiλs (1 − eikλs )

1 − eiλs

= (−θ)n

n!
eiλs

1 − eiλs

n∑
k=1

uk − (−θ)n

n!
eiλs

1 − eiλs
(2πn)1/2wu(λs);

E|U2n|2 = O(n1−2θ s−2) follows from (22) and E|wu(λs)|2 = O(1) [Robinson
(1995), page 1637], and the stated result follows because s−2 ≤ s2θ−1.

We move to the proof of (a2). Define ap = (d)p/p! so that
Xn = ∑n−1

p=0 apun−p + X0. Similar to the above, summation by parts gives

Xn − X0 − C(1)Xε
n

=
n−2∑
p=0

(ap − ap+1)

p∑
j=0

(
un−j − C(1)εn−j

) + an−1

n−1∑
j=0

(
un−j − C(1)εn−j

)
.

Since ap − ap+1 = − �(d+p)
�(d−1)�(p+2)

= O(|p|d−2+ ) and ap = O(|p|d−1+ ), the stated
result follows if

E

[ p∑
j=0

(
un−j − C(1)εn−j

)]2

= o(p) as p → ∞.(23)

Now

E

[ p∑
j=0

un−j

]2

=
p∑

j=−p

(p + 1 − |j |)γj ,

E

[
C(1)

p∑
j=0

εn−j

]2

= (p + 1)C(1)2 = (p + 1)

∞∑
j=−∞

γj ,

E

[
C(1)

p∑
j=0

un−j

p∑
l=0

εn−l

]
= C(1)E

[ p∑
j=0

∞∑
r=0

crεn−j−r

p∑
l=0

εn−l

]

= C(1)

p∑
j=0

p∑
l=0

∞∑
r=0

crI {r = l − j}

= C(1)

p∑
r=0

(p + 1 − r)cr,
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and it follows that E[∑p
j=0(un−j − C(1)εn−j )]2 is equal to

−(p + 1)
∑

|j |≥p+1

γj − 2
p∑
1

jγj

(24)

+ 2C(1)(p + 1)
∑

r≥p+1

cr − 2C(1)

p∑
1

rcr,

which is o(p) from
∑∞−∞ γj ,

∑∞
0 cr < ∞ and Kronecker’s lemma. Therefore,

(23) and the stated result follow.
(b) Let M be a generic finite positive constant. We collect some facts that are

used repeatedly: for α ∈ (−1,C) and q ≥ 2,

q∑
l=2

(log l)−4 ≤ (log 2)−4

√
q∑

2

+ (1
2 log q

)−4
q∑

√
q

≤ Mq(logq)−4,(25)

q∑
l=0

|l|α+
(
log(l + 2)

)−2 ≤ (log 2)−2

√
q∑

0

|l|α+ + (1
2 logq

)−2
q∑

√
q

lα

(26)
≤ Mqα+1(logq)−2.

Proceeding similarly to the proof of (a1), we obtain

Ũλsn(θ) − C(1)̃ελsn(θ) = U̇1n + U̇2n,

where

U̇1n =
n−2∑
p=0

bnp

p∑
j=0

(
un−j − C(1)εn−j

)
,

U̇2n = (−θ)n

n!
eiλs

1 − eiλs

n∑
k=1

(
uk − C(1)εk

)

− (−θ)n

n!
eiλs

1 − eiλs
(2πn)1/2[wu(λs) − C(1)wε(λs)]

and bnp is defined in (21).
First, we show that, uniformly in p = 0, . . . , n − 1,

E

[ p∑
j=0

(
un−j − C(1)εn−j

)]2

(27)
= O

(|p|+(
log(p + 2)

)−4)
.
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When p = 0, (28) follows immediately. When p ≥ 1, from (24) the left-hand side
of (27) is equal to

−(p + 1)
∑

|j |≥p+1

γj − 2
p∑
1

jγj

+ 2C(1)(p + 1)
∑

r≥p+1

cr − 2C(1)

p∑
1

rcr .

The first and third terms are bounded uniformly in p by p(log(p + 2))−4 from
Assumption 5′. For the second term we have∣∣∣∣∣

p∑
1

jγj

∣∣∣∣∣ =
∣∣∣∣∣

p∑
j=1

p∑
k=j

γk

∣∣∣∣∣
= O

( p∑
1

(
log(j + 1)

)−4
)

= O
(
(p + 1)

(
log(p + 1)

)−4)
uniformly in p, where the third equality follows from (25);

∑p
1 rcr = O((p+1)×

(log(p + 1))−4) follows from the same argument, and (27) follows.
From Minkowski’s inequality, (21) and (27), (E|U̇1n|2)1/2 is bounded by

n−2∑
p=0

|bnp||p|1/2
+

(
log(p + 2)

)−2

= O

( n/s∑
p=0

|p|−θ−1/2
+

(
log(p + 2)

)−2 +
n∑

p=n/s

|p|−θ−3/2
+ ns−1(

log(p + 2)
)−2

)

= O

(
(n/s)1/2−θ

(
log(n/s)

)−2 + (
log(n/s)

)−2
ns−1

n∑
n/s

|p|−θ−3/2
+

)

= O
(
n1/2−θsθ−1/2(log n)−2),

where the third line follows from (26), and the fourth line follows because
(log(n/s))−2 ≤ (log(n/m))−2 = O((log n)−2); E|U̇2n|2 = O(n1−2θ s−2) follows
from (27) and E|wu(λs) − C(1)wε(λs)|2 = O(1) [Robinson (1995), page 1637],
giving the stated result. �

LEMMA A.6. Under the assumptions of Theorem 4.2, we have, for j =
1, . . . ,m,

E|wu(λj ) − C(eiλj )wε(λj )|2 =
{

O(n−β), for β ∈ (0,1),

O(n−1 logn), for β ∈ [1,2].
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PROOF. The proof essentially follows from Theorem 3.15 of Zygmund
[(1959), page 91]. An elementary calculation gives

Ewu(λj )w
∗
ε (λj ) − C(eiλj )/2π

(28)
= 1

2π

∫ π

−π
[C(eiλ) − C(eiλj )]K(λ − λj ) dλ,

where K(λ) = (2πn)−1 ∑n
1
∑n

1 ei(t−s)λ is Fejér’s kernel. From Zygmund [(1959),
page 90], |K(λ)| ≤ An−1λ−2 and |K(λ)| ≤ An for a finite constant A. Assump-
tion 6′ implies |C(eiλ)−C(eiλj )| ≤ C|λ−λj |min{β,1} for |λ−λj | ≤ δ/2 and large
enough n. Therefore, if we split the integral (28), each part is bounded as follows:∫ λj −δ/2

−π
+

∫ π

λj +δ/2
= O

(
n−1

∫ π

δ/2
λ−2 dλ

)
= O(n−1),∫ λj −1/n

λj −δ/2
+

∫ λj +δ/2

λj+1/n
= O

(
n−1

∫ δ/2

1/n
λmin{β−2,−1} dλ

)

=
{

O(n−β), for β ∈ (0,1),

O(n−1 log n), for β ∈ (1,2]
and ∫ λj +1/n

λj−1/n
= O

(
n

∫ 1/n

0
λmin{β,1} dλ

)
= O

(
n−min{β,1}).

Hence, Ewu(λj )w
∗
ε (λj )−C(eiλj )/2π has the stated order; EIu(λj )−fu(λj ) has

the same order by a similar argument, and the order of

E|wu(λj ) − C(eiλj )wε(λj )|2
= E

[
Iu(λj ) − 2 Re[wu(λj )C

∗(eiλj )wε(λj )] + 2πfu(λj )Iε(λj )
]

follows. �

LEMMA A.7. Let vt = I {t ≥ 1} and �−αvt = (1 − L)−αvt with α > 0. Then
uniformly in 1 ≤ s ≤ m with m = o(n) the following hold:

(a) w�−αv(λs) = − eiλs

1 − eiλs

1

�(α + 1)

nα

√
2πn

[
1 + O

(
s−min{α,1})];

(b) wtα (λs) = − 1

1 − eiλs

nα

√
2πn

[
1 + O

(
s−min{α,1}) + O(n−1s)

]
.
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PROOF. For part (a), first consider the case α ∈ (0,1]. From Lemma A.1(b)

w�−αv(λs) = (1 − eiλs )−1w�−α+1v(λs)
(29) − (1 − eiλs )−1eiλs�−αvn/

√
2πn.

For α = 1, since wv(λs) = 0 it follows that

w�−1v(λs) = −(1 − eiλs )−1eiλs�−1vn/
√

2πn

= −(1 − eiλs )−1eiλs n/
√

2πn.

From
(d)k

k! − (d)k−1

(k − 1)! = �(k − 1 + d)

�(d − 1)�(k + 1)
= (d − 1)k

k!
and the fact that (α − 1)0/0! = (α)0/0! = 1 we obtain

(1 − L)−α+1vt =
t−1∑
k=0

(α − 1)k

k!

=
t−1∑
k=1

[
(α)k

k! − (α)k−1

(k − 1)!
]

+ (α)0

0! = (α)t−1

(t − 1)! .

Hence, for α ∈ (0,1) from Lemma A.2 we have

w�−α+1v(λs) = 1√
2πn

n∑
t=1

(α)t−1

(t − 1)!e
itλs

= eiλs

√
2πn

[
Dn(e

iλs ;−α) − (α)n

n!
]

= eiλs

√
2πn

[
(1 − eiλs )−α + O(nαs−1)

]
.

Then the stated result follows because

�−αvn = (α + 1)n−1

(n − 1)! = 1

�(α + 1)
nα[1 + O(n−1)],

so that the second term on the right-hand side of (29) dominates the first term. The
result for α > 1 is derived from (29) and by induction.

For part (b), observe that

w�−αv(λs) = eiλs

√
2πn

n−1∑
t=0

(α + 1)t

t ! eitλs

= eiλs

√
2πn

+ eiλs

√
2πn

n−1∑
1

[
1

�(α + 1)
tα + O(tα−1)

]
eitλs

= eiλs�(α + 1)−1wtα (λs) + O(nα−1/2),
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and the required result follows from part (a). �

APPENDIX B

Proofs of theorems.

PROOF OF THEOREM 3.1. For notational simplicity we assume X0 = 0
throughout the proof, but the result carries over for general X0 with Xn − X0
replacing Xn. We follow the approach developed by Robinson (1995) for the

stationary case. Define G(d) = G0m
−1 ∑m

1 λ
2d−2d0
j and S(d) = R(d) − R(d0).

For arbitrarily small � > 0, define �1 = {d :d0 − 1
2 + � ≤ d ≤ �2} and �2 =

{d :�1 ≤ d < d0 − 1
2 + �}, possibly empty. Without loss of generality we assume

� < 1
4 hereafter. In view of the arguments in Robinson (1995), d̂

p→ d0 if

sup
�1

|T (d)| p→ 0 and Pr
(

inf
�2

S(d) ≤ 0
)

→ 0

as n → ∞, where

T (d) = log
Ĝ(d0)

G0

− log
Ĝ(d)

G(d)
− log

(
1

m

m∑
1

j2d−2d0

/
m2d−2d0

2(d − d0) + 1

)

+ (2d − 2d0)

[
1

m

m∑
1

log j − (logm − 1)

]
.

Robinson (1995) shows that the fourth term on the right-hand side is O(log m/m)

uniformly in d ∈ �1 and

sup
�1

∣∣∣∣∣2(d − d0) + 1

m

m∑
1

(
j

m

)2d−2d0

− 1

∣∣∣∣∣ = O

(
1

m2�

)
.(30)

Thus, sup�1
|T (d)| p→ 0 if

sup
�1

∣∣∣∣ log
Ĝ(d0)

G0
− log

Ĝ(d)

G(d)

∣∣∣∣ p→ 0.(31)

Let

A(d) = 2(d − d0) + 1

m

m∑
1

(
j

m

)2d−2d0[
λ

2d0
j Ix(λj ) − G0

]
,

B(d) = 2(d − d0) + 1

m
G0

m∑
1

(
j

m

)2d−2d0

,
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from which it follows that

Ĝ(d) − G(d)

G(d)
= A(d)

B(d)
,

log
Ĝ(d0)

G0
− log

Ĝ(d)

G(d)
= log

(
B(d)

B(d0)

)
+ log

(
B(d0) + A(d0)

B(d) + A(d)

)
.

By the fact that Pr(| log Y | ≥ ε) ≤ 2 Pr(|Y − 1| ≥ ε/2) for any nonnegative random
variable Y and ε ≤ 1, (31) holds if

sup
�1

∣∣∣∣B(d) − B(d0)

B(d0)

∣∣∣∣ p→ 0 and

(32)

sup
�1

∣∣∣∣B(d0) − B(d) + A(d0) − A(d)

B(d) + A(d)

∣∣∣∣ p→ 0.

For d0 ∈ (1
2 ,1), from the arguments in Robinson [(1995), page 1636], sup�1

|A(d)|
is bounded by

m−1∑
r=1

(
r

m

)2� 1

r2

∣∣∣∣∣
r∑

j=1

[λ2d0
j Ix(λj ) − G0]

∣∣∣∣∣
(33)

+ 1

m

∣∣∣∣∣
m∑

j=1

[λ2d0
j Ix(λj ) − G0]

∣∣∣∣∣.
Define Dnj(d) = (1 − eiλj )−1λd

j Dn(e
iλj ; θ). Then from Lemmas A.2 and A.3 we

have

Dnj (d) = e(π/2)di + O(λj ) + O(jd−2),
(34)

|Dnj (d)|2 = 1 + O(λ2
j ) + O(jd−2)

uniformly in j = 1, . . . ,m. Hereafter let Ixj denote Ix(λj ), let wuj denote wu(λj ),
and similarly for other d.f.t.’s and periodograms. Now

λ
2d0
j Ixj − G0

= λ
2d0
j Ixj − |Dnj(d0)|2Iuj + [|Dnj(d0)|2 − fu(0)/fu(λj )

]
Iuj

+ [
Iuj − |C(eiλj )|2Iεj

]
fu(0)/fu(λj ) + fu(0)(2πIεj − 1).

(35)
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From Lemma A.1(a), the fact that ||A|2 −|B|2| ≤ |A+B||A−B| and the Cauchy–
Schwarz inequality we have

E
∣∣λ2d0

j Ixj − |Dnj (d0)|2Iuj

∣∣
≤

(
E

∣∣∣∣2Dnj (d0)wuj − λ
d0
j

1 − eiλj

Ũλjn(θ0) + eiλj Xn√
2πn

∣∣∣∣2
)1/2

×
(
E

∣∣∣∣ λ
d0
j

1 − eiλj

Ũλj n(θ0) + eiλj Xn√
2πn

∣∣∣∣2
)1/2

,

(36)

with θ0 = 1 − d0. From (34), Lemma A.5(a) and EIuj = O(1) [Robinson (1995),
page 1637] the right-hand side is O(jd0−1), giving

E

{
m−1∑

1

(
r

m

)2� 1

r2

∣∣∣∣∣
r∑
1

[
λ

2d0
j Ixj − |Dnj(d0)|2Iuj

]∣∣∣∣∣
}

= O(md0−1 + m−2� log m).

For any η > 0, (34) and Assumption 1 imply that n can be chosen so that∣∣|Dnj(d0)|2 − fu(0)/fu(λj )
∣∣ ≤ η + O(λ2

j ) + O(j−1/2), j = 1, . . . ,m,

and from Robinson [(1995), page 1637], we have

E
∣∣Iuj − |C(eiλj )|2Iεj

∣∣ = O
(
j−1/2(log(j + 1)

)1/2)
, j = 1, . . . ,m.

It follows that
m∑
1

(
r

m

)2� 1

r2

r∑
1

∣∣[|Dnj(d0)|2 − fu(0)/fu(λj )
]
Iuj

+ [Iuj − |C(eiλj )|2Iεj ]fu(0)/fu(λj )
∣∣

= Op(η + m2n−2 + m−2� logm).

Robinson (1995) shows
∑m

1 (r/m)2�r−2|∑r
1(2πIεj − 1)| p→ 0. Using the same

technique, we can show that the second term in (33) is op(1), giving

sup�1
|A(d)| p→ 0.

For d0 = 1 first observe that

A(d) − X2
n

2πn

2(d − d0) + 1

m

m∑
1

(
j

m

)2d−2d0

= 2(d − d0) + 1

m

m∑
1

(
j

m

)2d−2d0[
λ

2d0
j Ixj − G0 − X2

n

2πn

]
.
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From Lemma A.1(b) we have

λ
2d0
j Ixj − X2

n

2πn
(37)

= λ2
j

|1 − eiλj |2 Iuj + O(λ2
j )

X2
n

2πn
− Xn√

2πn

λ2
j 2 Re[eiλj wuj ]
|1 − eiλj |2 .

The results in Robinson [(1995), page 1637] imply that

E|wuj − C(eiλj )wεj |2 = O
(
j−1 log(j + 1)

)
, j = 1, . . . ,m.(38)

Using a similar decomposition as (35) and the results thereafter, with (37) and (38),
we obtain

E

[
r∑

j=1

(
λ

2d0
j Ixj − 2πfu(0)Iεj − X2

n/(2πn)
)]

(39) = O(rη + r3n−2 + r1/2 log r),

for 1 ≤ r ≤ m. In view of (30) it follows that

sup
�1

|A(d) − X2
n/(2πn)| = Op(η + m2n−2 + m−2� log m) + op(1).

Finally, observe that (30) gives sup�1
|B(d) − G0| = O(m−2�) and (32) follows.

Now we consider �2 = {d :�1 ≤ d < d0 − 1
2 +�}. In a way similar to Robinson

[(1995), pages 1638 and 1639] we have

Pr
(

inf
�2

S(d) ≤ 0
)

≤ Pr

(
1

m

m∑
1

(aj − 1)λ
2d0
j Ixj ≤ 0

)
,

where p = exp(m−1 ∑m
1 log j) ∼ m/e as m → ∞ and

aj =
{

(j/p)2�−1, for 1 ≤ j ≤ p,

(j/p)−2d0−1, for p < j ≤ m,
m∑
1

aj = O(m),

m∑
1

aj
2 = O(m2−4�),

m∑
1

aj j
d0−1 = O(m1−2� logm + md0),

m∑
1

aj j
−1/2 = O(m1−2�).
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Applying (35) and (37) and proceeding as above in conjunction with the fact above

and m−1 ∑m
1 (aj − 1)(2πIεj − 1)

p→ 0 [Robinson (1995), page 1639], we obtain

1

m

m∑
j=1

(aj − 1)λ
2d0
j Ixj =

(
G0 + X2

n

2πn
I {d0 = 1}

)
1

m

m∑
1

(aj − 1) + op(1).

Choose � < 1/(2e) < 1/4 with no loss of generality. Then for sufficiently large m

we have m−1 ∑m
1 (aj − 1) > δ > 0 and hence

Pr

(
1

m

m∑
1

(aj − 1)λ
2d0
j Ixj ≤ 0

)
→ 0

as n → ∞. Therefore, d̂
p→ d0, giving the stated result.

For the limit of Ĝ(d), recall Ĝ(d) = G(d) + A(d)G(d)/B(d), d̂
p→ d0,

G(d̂)
p→ G0 and B(d̂)

p→ G0. The required result follows because

sup
�1

∣∣∣∣A(d) − X2
n

2πn
I {d0 = 1}

∣∣∣∣ p→ 0,

and X2
n/(2πn) = G0(X

ε
n)

2 +op(1)
d→ G0χ

2
1 from a standard martingale CLT. �

PROOF OF THEOREM 3.2. Define G(d) = G0m
−1 ∑m

1 λ2d−2
j and S(d) =

R(d) − R(1). For 0 < � < 1
4 define �1 = {d : 1

2 + � ≤ d ≤ �2} and �2 =
{d :�1 ≤ d < 1

2 + �}, possibly empty. Then, by the same line of arguments as

above, d̂
p→ 1 if

sup
�1

|T (d)| p→ 0 and Pr
(

inf
�2

S(d) ≤ 0
)

→ 0

as n → ∞, where

T (d) = log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)
− log

(
1

m

m∑
1

j2d−2
/ m2d−2

2(d − 1) + 1

)

+ (2d − 2)

[
1

m

m∑
1

log j − (log m − 1)

]
;

sup�1
|T (d)| p→ 0 if

sup
�1

∣∣∣∣ log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)

∣∣∣∣ p→ 0.(40)
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Let

A(d) = 2d − 1

m

m∑
1

(
j

m

)2d−2

j2−2d0λ
2d0
j Ixj ,

B(d) = 2d − 1

m
G0

m∑
1

(
j

m

)2d−2

.

Then a little algebra shows [Ĝ(d)/G(d)] = (2π/n)2−2d0[A(d)/B(d)], giving

log
Ĝ(1)

G0
− log

Ĝ(d)

G(d)
= log

(
B(d)

G0

)
− log

(
A(d)

A(1)

)
.

Therefore, (40) holds if

sup
�1

∣∣∣∣A(d) − A(1)

A(1)

∣∣∣∣ p→ 0 and sup
�1

∣∣∣∣B(d) − G0

G0

∣∣∣∣ p→ 0.(41)

We proceed to approximate A(d) by

A1(d) = 2d − 1

m

m∑
1

(
j

m

)2d−2

j2−2d0λ
2d0
j |1 − eiλj |−2 X2

n

2πn

= (2π)2d0−3C(1)2n1−2d0(Xε
n)

2 + op(1) uniformly in d ∈ �1,

where the second equality follows from

j2−2d0λ
2d0
j |1 − eiλj |−2 = (2π)2d0−2n2−2d0

(
1 + O(λ2

j )
)
,

(30) and Lemma A.5(a2). For d0 ∈ (1, 3
2 ], from Lemmas A.1(a) and A.5, similarly

as in (36) we obtain [Dnj (d) is defined in the proof of Theorem 3.1]

E

∣∣∣∣j2−2d0λ
2d0
j Ixj − j2−2d0λ

2d0
j |1 − eiλj |−2 X2

n

2πn

∣∣∣∣
≤

(
E

∣∣∣∣j1−d0Dnj (d0)wuj − j1−d0λ
d0
j

1 − eiλj

Ũλjn(θ0) + 2eiλj Xn√
2πn

∣∣∣∣2
)1/2

×
(
E

∣∣∣∣j1−d0Dnj (d0)wuj − j1−d0λ
d0
j

1 − eiλj

Ũλj n(θ0)√
2πn

∣∣∣∣2
)1/2

= O(j1−d0).

It follows that sup�1
|A(d) − A1(d)| = Op(m1−d0 + m−2�), and uniformly in �1

we have
A(d) − A(1)

A(1)
= op(1)

(2π)2d0−3C(1)2n1−2d0(Xε
n)

2 + op(1)

= op(1)

(2π)2d0−3C(1)2(
∑n

1 yt)2 + op(1)
,
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where yt = n1/2−d0(d0)n−t εt /(n − t)!. Assumption 3 implies

n∑
1

E(y2
t |Ft−1) → �1 = �(d0)

−2(2d0 − 1)−1,

n∑
1

E(y2
t I {|yt | > δ}) → 0 for all δ > 0.

Therefore, from a standard martingale CLT we have n1/2−d0Xε
n

d→ N(0,�1).
Thus,

sup
�1

∣∣∣∣A(d) − A(1)

A(1)

∣∣∣∣ p→ 0,

and sup�1
|[B(d) − G0]/G0| → 0 as before, thereby establishing (41).

Next, consider �2 = {d :�1 ≤ d < 1
2 + �}. Let p = exp(m−1 ∑m

1 log j). Then
S(d) = log{D̂(d)/D̂(1)}, where D̂(d) = m−1 ∑m

1 (j/p)2d−2j2Ixj . It follows that

inf
�2

D̂(d) ≥ 1

m

m∑
1

aj j
2Ixj ,

where

aj =
{

(j/p)2�−1, for 1 ≤ j ≤ p,

(j/p)−3, for p < j ≤ m.

Then

Pr
(

inf
�2

S(d) ≤ 0
)

≤ Pr

(
1

m

m∑
1

(aj − 1)j2−2d0λ
2d0
j Ixj ≤ 0

)
.(42)

In view of the fact that
∑m

1 aj = O(m),
∑m

1 ajj
1−d0 = O(m1−2� logm + m−d0),∑m

1 ajj
−1/2 = O(m1−2�), we obtain similarly to before

1

m

m∑
1

(aj − 1)j2−2d0λ
2d0
j Ixj

= 1

m

m∑
1

(aj − 1)j2−2d0λ
2d0
j |1 − eiλj |−2 X2

n

2πn
+ op(1)

= (2π)2d0−3n1−2d0X2
n

1

m

m∑
1

(aj − 1) + op(1).

Since m−1 ∑m
1 (aj − 1) > δ > 0 for sufficiently large m by choosing � < 1/(2e),

we obtain Pr(m−1 ∑m
1 (aj − 1)j2−2d0λ

2d0
j Ixj ≤ 0) → 0 as n → ∞ and hence
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d̂
p→ 1, giving the stated result. For d0 ∈ (3

2 , 5
2 ], from Lemma A.1(b) we have

(1 − eiλj )wxj = w�xj
− nd−1n1/2−dXne

iλj /
√

2π.

Because E|w�xj
|2 = O(n2d−2s−1) from �Xt ∼ I (d − 1) and n1/2−dXn con-

verges to a Gaussian random variable, the stochastic behavior of wxj is dominated
by Xn. Hence, the required result follows from the same line of argument as above,
and the results for larger d0 are derived similarly. �

PROOF OF THEOREM 4.1. We follow the same line of approach as the proof
of Theorem 2 of Robinson (1995). Theorem 3.1 holds under the current conditions
and implies that with probability approaching 1, as n → ∞, d̂ satisfies

0 = R′(d̂) = R′(d0) + R′′(d∗)(d̂ − d0),(43)

where |d∗ − d0| ≤ |d̂ − d0|. Now

R′′(d) = 4[F̂2(d)F̂0(d) − F̂ 2
1 (d)]

F̂ 2
0 (d)

= 4[Ê2(d)Ê0(d) − Ê2
1(d)]

Ê2
0(d)

,

F̂k(d) = 1

m

m∑
1

(log j)kλ2d
j Ixj , Êk(d) = 1

m

m∑
1

(log j)kj2dIxj .

As pointed out by Andrews and Sun [(2001), page 21], since F̂k(d0) =
Op((logm)k) as shown below, we need to show Êk(d

∗) − Êk(d0) =
op(n2d0(logm)−k) rather than op(n2d0) as in (4.4) in Robinson. Fix ε > 0 and
choose n so that 2ε < (log m)2. Let M = {d : (logm)6|d −d0| ≤ ε}. As in Robinson
[(1995), page 1642] we have

Pr
(|Êk(d

∗) − Êk(d0)| > (2π/n)−2d0(log m)−k
)

(44)
≤ Pr

(
Ĝ(d0) > (logm)5−2k/(2eε)

) + Pr
(
(log m)6|d∗ − d0| > ε

)
.

The first probability tends to 0 because Ĝ(d0)
p→ G0. The second probability tends

to 0 if

sup
�1

∣∣∣∣B(d) − B(d0)

B(d0)

∣∣∣∣ + sup
�1

∣∣∣∣B(d0) − B(d) + A(d0) − A(d)

B(d) + A(d)

∣∣∣∣
= op

(
(log m)−12)

.

(45)

Using (35) and Assumption 1′, we obtain, for 1 ≤ r ≤ m,

E

{
r∑
1

(
λ

2d0
j Ixj − fu(0)2πIεj

)} = O(rd0 + rβ+1n−β),

and Robinson [(1995), (4.9)] shows that
∑r

1(2πIεj − 1) = Op(r1/2). In conjunc-
tion with sup�1

|B(d) − G0| = O(m−2�) they give (45). It follows that

R′′(d∗) = 4
[
F̂2(d0)F̂0(d0) − F̂ 2

1 (d0)
][

F̂ 2
0 (d0)

]−1 + op(1) = 4 + op(1),
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where the second equality follows from F̂k(d0) = G0m
−1 ∑m

1 (log j)k +
op((logm)−3), obtained similarly as A(d0)

p→ 0. Next we consider the first term
on the right-hand side of (43). Now

m1/2R′(d0) = 2m−1/2
m∑
1

νj

[
λ

2d0
j Ixj − G0

][G0 + op(1)]−1,

where νj = log j − m−1 ∑m
1 log j and

∑m
1 νj = 0. From Lemmas A.1 and A.5,

(34) and (38), we have

m∑
1

νjλ
2d0
j Ixj =

m∑
1

νj Iuj + (2πn)−1X2
n

m∑
1

νjλ
2d0
j |1 − eiλj |−2 + 2 Re[Tn] + Rn,

where

Tn =
m∑
1

νjD
∗
nj (d0)C

∗(eiλj )w∗
εj λ

d0
j (1 − eiλj )−1C(1)̃ελj n(θ0)(2πn)−1/2

and

Rn = Op

(
(log m)

(
md0−1/2 logm + m1/2(logn)−2 + (logm)2 + m3n−2))

= op(m1/2).

Rewrite Tn/C(1) as

m∑
1

νjD
∗
nj (d0)C

∗(eiλj )λ
d0
j (1 − eiλj )−1(2πn)−1

(46)

×
n−1∑
p=0

θ̃λj pe−ipλj εn−p

n−1∑
q=0

eiqλj εn−q .

Since εt is a martingale difference sequence, E|Tn|2 is bounded by

1

n2

m∑
j=1

m∑
k=1

|νj ||νk|λd0−1
j λ

d0−1
k

n−1∑
p=0

∣∣θ̃λj p

∣∣∣∣θ̃−λkp

∣∣(47)

+ 1

n2

m∑
j=1

|νj |λd0−1
j

n−1∑
p=0

∣∣θ̃λj p

∣∣ m∑
k=1

|νk|λd0−1
k

n−1∑
q=0

∣∣θ̃−λkq

∣∣(48)

+ 1

n2

m∑
j=1

m∑
k=1

|νj ||νk|λd0−1
j λ

d0−1
k

(49)

×
n−1∑

p=0,p 
=q

∣∣θ̃λj p

∣∣∣∣θ̃−λkp

∣∣∣∣∣∣∣
n−1∑
q=0

eiq(λj−λk)

∣∣∣∣∣,
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and (47) and (48) are bounded by, respectively,

(logm)2
m∑
1

m∑
1

jd0−1kd0−1n−2d0

n−1∑
0

|p|2d0−2
+ = O

(
n−1m2d0(log m)2)

,

[
logm

m∑
1

jd0−1n−d0

(n/j∑
0

|p|d0−1
+ +

n−1∑
n/j

pd0−2nj−1

)]2

= O
(
(logm)4)

.

In view of the fact that
∑n−1

0 eiq(λj−λk) = nI {j = k}, (49) is bounded by

(log m)2n−1
m∑
1

λ
2d0−2
j

n−1∑
0

|p|2d0−2
+ = O

(
m2d0−1(logm)2)

,

giving Tn = Op(n−1/2md0 log m + (logm)2 + md0−1/2 logm) = op(m1/2).
From Lemma A.5 and the fact that

∑m
1 νj j

2d0−2 = (2d0 − 1)−2(2d0 −
2)m2d0−1 + O(log m), we obtain

(2πn)−1X2
n

m∑
1

νjλ
2d0
j |1 − eiλj |−2 = �G0m

2d0−1[
n1−2d0(Xε

n)
2 + op(1)

]
,

where � = (2π)2d0−2(2d0 − 1)−2(2d0 − 2). Robinson [(1995), page 1644] shows
that

∑m
1 νj Iuj = G0

∑m
1 νj Iεj + op(m1/2). Therefore,

m1/2R′(d0) = 2m−1/2
m∑
1

νj [2πIεj − 1]

− 2�m2d0−3/2[
n1−2d0(Xε

n)
2 + op(1)

] + op(1).

The first term on the right-hand side converges to a N(0,4) random variable by
Robinson (1995). For d0 ∈ (1

2 , 3
4), the second term on the right-hand side is op(1),

and the required result follows. For d0 ∈ (3
4 ,1), we have

m2−2d0R′(d0) = 2�n1−2d0(Xε
n)

2 + op(1) = 2�

(
n∑
1

yt

)2

+ op(1),

where yt = n1/2−d0(d0)n−t εt /(n − t)!, suppressing reference to n in yt . Since∑n
1 E(y2

t |Ft−1) → �1 = �(d0)
−2(2d0 − 1)−1 and

∑n
1 Ey4

t = O(n−1), from a

standard martingale CLT we obtain
∑n

1 yt
d→ N(0,�1), giving m2−2d0R′(d0)

d→
2��1χ

2
1 and the required result. When d0 = 3

4 , m1/2R′(d0) = 2
∑n

1 zt +
2�(

∑n
1 yt)

2 + op(1), where yt is defined above, z1 = 0 and, for t ≥ 2,

zt = εt

t−1∑
s=1

εsct−s, cs = 2n−1m−1/2
m∑
1

νj cos(sλj ),
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and ξt = (zt , yt )
′ form a zero-mean martingale difference array; hence

∑n
1 ξt

d→
N(0, diag(1,�1)) if, for any nonrandom (2 × 1) vector α,

n∑
1

E
[
(α′ξt )

2|Ft−1
] − α′ diag(1,�1)α

p→ 0,(50)

n∑
1

E
[
(α′ξt )

2I (|α′ξt | > δ)
] → 0 for all δ > 0.(51)

Robinson shows
∑n

1 E(z2
t |Ft−1) − 1

p→ 0 and
∑n

1 Ez4
t → 0. In conjunction with∑n

1 Ey4
t → 0, (51) is satisfied. Since

∑n
1 E(y2

t |Ft−1) → �1, (50) holds if

n∑
1

E[ytzt |Ft−1] = n1/2−d0

n∑
t=2

(d0)n−t

(n − t)!
t−1∑
s=1

εsct−s
p→ 0.

The term in the middle has mean zero and variance bounded by

n1−2d0

n∑
t=2

|n − t|d0−1
+

n∑
u=2

|n − u|d0−1
+

min{t−1,u−1}∑
s=1

ct−scu−s

= n1−2d0

n∑
2

|n − t|2d0−2
+

t−1∑
1

c2
t−s

+ 2n1−2d0

n∑
3

|n − t|d0−1
+

t−1∑
2

(n − u)d0−1
u−1∑

1

ct−rcu−r .

Robinson [(1995), page 1646] shows cs = cn−s , |cs| = O(m−1/2s−1 logm) for
1 ≤ s ≤ n/2, |cs | = O(m1/2n−1 log m), and

∑n
1 c2

s = O(n−1(logm)2). Therefore,
the first term on the right-hand side is bounded by n−1(log m)2, and the second
term on the right-hand side is bounded by(

n∑
1

c2
t

)1/2

n1−2d0

n∑
3

|n − t|d0−1
+

t−1∑
2

(n − u)d0−1

(
t−1∑

t−u+1

c2
r

)1/2

= O

(
(log m)2m−1/2n1/2−2d0

×
n∑
3

|n − t|d0−1
+

t−1∑
2

(n − u)d0−1(
(t − u)−1/2 + |n − t|−1/2

+
))

= O
(
m−1/2(logm)2)

,

giving (50), thereby completing the proof of the theorem. �
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PROOF OF THEOREM 4.2. We follow the approach and notation of the proof
of Theorem 4.1. First, from Assumption 1′ (39) is strengthened to

E

[
r∑
1

(
λ

2d0
j Ixj − 2πfu(0)Iεj − X2

n/2πn
)]

= O(rβ+1n−β + r1/2 log r),

(52)

for 1 ≤ r ≤ m. It follows that

sup
�1

|A(d) − X2
n/2πn| = Op(mβn−β + m−2� logm),

and thus (45) holds. Since Ĝ(d0) = G0 + X2
n/(2πn) + op(1), the first probability

in (44) tends to 0 and R′′(d∗) = 4[F̂2(d0)F̂0(d0) − F̂ 2
1 (d0)][F̂0(d0)]−2 + op(1).

Using (52) and the fact that
∑r

1(2πIεj − 1) = Op(r1/2), we obtain

F̂k(d0) −
(
G0 + X2

n

2πn

)[
1

m

m∑
1

(log j)k

]

= Op

(
mβn−β(log m)2 + m−1/2(log m)3)

,

giving R′′(d∗) p→ 4. Now

m1/2R′(d0) = 2m−1/2 ∑m
1 νjλ

2d0
j Ixj

Ĝ(d0)

= 2m−1/2 ∑m
1 νjλ

2d0
j Ixj

G0(1 + n−1(Xε
n)

2) + op(1)
.

The numerator is equal to

2m−1/2
m∑
1

νj

(
1 + O(λ2

j )
)∣∣wuj − eiλj Xn/

√
2πn

∣∣2
= 2m−1/2

m∑
1

νj Iuj − 2m−1/2(
Xn/

√
2πn

)
2

[
m∑
1

νj e
−iλj wuj

]

+ Op(m5/2n−2 logm)

= 2m−1/2G0

m∑
1

νj [2πIεj − 1]

− 2m−1/2G0n
−1/2Xε

n

m∑
1

νj 2 Re
[√

2πwεj

] + op(1),
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where the third line follows from Robinson [(1995), (4.8)], Lemma A.6 and
Assumptions 1′ and 6′. It follows that

m1/2R′(d0) = 2
∑n

1 zt − 2
∑n

1 yt

∑n
1 xt + op(1)

1 + (
∑n

1 yt)2 + op(1)
,

where yt = n−1/2εt , xt = n1/2εtct and zt and ct are defined in the proof of

Theorem 4.1. Therefore, Wn = ∑n
1(zt , yt , xt )

′ d→ W ∼ N(0, diag(1,1,2)) if

n∑
1

E[(zt , yt , xt )
′(zt , yt , xt )|Ft−1] p→ diag(1,1,2),(53)

n∑
1

Ez4
t +

n∑
1

Ey4
t +

n∑
1

Ex4
t → 0.(54)

We have already shown
∑n

1 Ez4
t +∑n

1 Ey4
t → 0 in the proof of Theorem 4.1. Since

n∑
1

Ex4
t = n2

n∑
1

c4
t

= O

(
n−2

n/m∑
1

m2(logm)4 + n2
∞∑

n/m

m−2s−4(log m)4

)

= O
(
n−1m(log m)4)

,

(54) holds. To show (53),
∑n

1 E[(zt , yt )
′(zt , yt )|Ft−1] p→ diag(1,1) has already

been shown above, and
n∑
1

E(x2
t |Ft−1)

= 4n−1m−1
n∑
1

(
m∑
1

νj cos(sλj )

)2

= 4n−1m−1
m∑
1

ν2
j

n∑
1

cos2(sλj )

+ 2n−1m−1
∑∑

j 
=k

νj νk

n∑
1

[
cos{s(λj + λk)} + cos{s(λj − λk)}]

= 2n−1m−1
m∑
1

ν2
j

n∑
1

[1 + cos(2sλj )]

→ 2,
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since
∑m

1 ν2
j ∼ m. Furthermore,

∑n
1 E(xtyt |Ft−1) = ∑n

1 ct = 0 and

n∑
1

E(xtzt |Ft−1) =
n∑

t=2

n1/2ct

t−1∑
s=1

εsct−s
p→ 0,

because the right-hand side has mean zero and variance

n

n∑
t=2

ct

n∑
u=2

cu

min{t−1,u−1}∑
s=1

ct−scu−s

= n

n∑
2

c2
t

t−1∑
1

c2
t−s + 2n

n∑
3

ct

t−1∑
2

cu

u−1∑
1

ct−scu−s .

The first term is O(n−1(log m)4), and the second term is bounded by

n

(
n∑
1

|cs |
)2(

n∑
1

c2
t

)

= O

(
(logm)2

(
m−1/2 logm + m−1/2 logm

n/2∑
n/m

s−1

)2)

= O
(
m−1(log m)6)

.

Thus (53) holds and Wn
d→ W . Therefore, from the continuous mapping theorem

m1/2R′(d0)
d→ 2W1 − 2W2W3

1 + (W2)2 ∼ N

(
0,

4[1 + 2(W2)
2]

[1 + (W2)2]2

)
conditional on W2, and unconditionally

m1/2(d̂ − d0)
d→

∫ ∞
−∞

N
(
0, 1

4 (1 + 2h2)(1 + h2)−2)
φ(h)dh,

where φ(·) is the standard normal p.d.f., giving the stated result. �

PROOF OF THEOREM 5.1. The argument follows the approach of the proof
of Theorem 3.2. First we consider the case α ≤ d0 − 1

2 . Since α > 1
2 , d0 > 1 must

hold. Let

A1(d) = 2d − 1

m

m∑
1

(
j

m

)2d−2 j2−2d0λ
2d0
j

|1 − eiλj |2
1

2πn
|µnα + eiλj X0

n|2

= (2π)2d0−3[
µnα−d0+1/2 + n1/2−d0X0

n

]2

+ op(1) (uniformly for �1)

d→ [
C1n

α−d0+1/2 + C2N(0,1)
]2

,
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for generic nonzero constants C1 and C2, where the second equality and
convergence in distribution follow by the same argument as before. Define the
other quantities as in the proof of Theorem 3.2. Because

E
∣∣j2−2d0λ

2d0
j Ixj − j2−2d0λ

2d0
j |1 − eiλj |−2(2πn)−1|µnα + eiλj X0

n|2
∣∣

= O(j1−d0 + j−1/2 + nα−d0−1/2j),

sup�1
|A(d) − A1(d)| p→ 0 follows, giving (41); Pr(inf�2 S(d) ≤ 0) → 0 is

obtained similarly and we establish d̂
p→ 1.

Next consider the case α > d0 − 1
2 . Define

A(d) = 2d − 1

m

m∑
1

(
j

m

)2d−2

n1−2αλ2
j Ixj ,

B(d) = 2d − 1

m
G0

m∑
1

(
j

m

)2d−2

,

A1(d) = 2d − 1

m

m∑
1

(
j

m

)2d−2

µ2
λ2

j

|1 − eiλj |2
1

2π

→ (2π)−1µ2 uniformly for �1,

and define the other quantities as in the proof of Theorem 3.2. Then it follows that

Ĝ(d)/G(d) = n2α−1A(d)/B(d),

and sup�1
|T (d)| p→ 0 follows if sup�1

|[A(d) − A(1)]/A(1)| p→ 0. Since

E
∣∣n1−2αλ2

j Ixj − λ2
j |1 − eiλj |−2(2π)−1µ2∣∣ = O(j−1/2 + jn−1 + nd0−1/2−α),

sup�1
|A(d) − A1(d)| p→ 0 follows, giving (41); Pr(inf�2 S(d) ≤ 0) → 0 is

obtained similarly, and we establish d̂
p→ 1. �
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