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ment effect heterogeneity under the assumption of selection on observables, and shows
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and subgroups exhibiting treatment effect heterogeneity. We apply the multiple test-

ing procedures to data from a large-scale Pakistani school report card experiment, and

uncover evidence of policy-relevant heterogeneous effects from information provision

on child test scores. Further, our analysis reinforces the importance of preventing

the inflation of false positive conclusions because 75 percent of statistically significant

quantile treatment effects become insignificant once corrections for multiple testing are

applied.
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1 Introduction

Individuals differ not only in their characteristics but also in how they respond to a particular

treatment or intervention. Therefore, treatment effects may vary between subgroups defined

by individual characteristics such as gender or race. For example, programs that provide

information on schools’ performance on standardized tests may lead to a different likelihood

that parents “vote with their feet” and move their child to a better school based on parental

characteristics such as education. In addition, individuals’ response to a particular treatment

may vary across quantiles of the unconditional outcome distribution. After all, if a school

information provision program improves the odds that a child’s performance relative to her

peers can be correctly perceived by the parents, parental responses such as switching schools

may vary with the child’s relative performance.

In an important paper, Bitler, Gelbach, and Hoynes (2006) show that data from an

experimental evaluation of a welfare reform policy exhibit treatment effect heterogeneity

as predicted by a labor supply model and that this pattern would be missed by report-

ing a mean treatment effect.1 To harness the potential policy benefits from treatment

effect heterogeneity—ranging from personalized medicine to welfare reform parameters to

customized marketing recommendations—requires an understanding whether the heteroge-

neous effects are spurious. A growing literature in econometrics has developed formal tests

for treatment effect heterogeneity. For example, Koenker and Xiao (2002) proposed asymp-

totic inference on the quantile regression process, which can be applied to testing for quantile

treatment effect (QTE) heterogeneity. In a similar framework, Chernozhukov and Fernandéz-

Val (2005) proposed subsampling-based testing. Crump et al. (2008) developed a test for

treatment effect heterogeneity using a nonparametric regression function approach under the

selection on observables assumption. Recently, Ding and Miratrix (2016) and Chung and

Olivares (2020) considered the approach of permutation tests for the distributional hetero-

geneity of treatment effects. Yet, these approaches are not frequently applied by empirical

researchers who generally conduct statistical inference without also allowing for dependence

across either subgroup or quantiles.2

A multiple testing approach is useful in this context, as it provides a basis for judging

the empirical relevance of treatment effect heterogeneity and sheds light on the pattern of

1In a follow-up paper, Bitler, Gelbach, and Hoynes (2017) present evidence that the treatment effect
heterogeneity exhibited in this experiment is not fully explained by between subgroup differences. Other
papers that have significantly contributed to estimating heterogeneous treatment effects include Heckman,
Smith, and Clements (1997); Friedlander and Robins (1997); Abadie (2002); Firpo (2007).

2In Online Appendix A, we build on evidence from Fink, McConnell, and Vollmer (2014) who demonstrate
the potential value for the testing strategy we propose in a variety of empirical applications.
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treatment effect heterogeneity across different population groups. For example, policymakers

can use the results to modify the design of accountability programs more effectively if they

were to know which parents respond to market-level information on school quality. These

parents may differ systematically by predetermined characteristics or by location between

specific percentiles of their child’s test score distribution.

Given the widespread interest in treatment effect heterogeneity and the importance of

multiple comparisons corrections, it is somewhat surprising that, to the best of our knowl-

edge, there has been no research that formally establishes the asymptotic validity of a boot-

strap multiple testing procedure for QTE under the assumption of selection on observables.3

The first contribution of this paper is to fill this gap by providing a formal result of asymptotic

validity when the propensity scores are parametrically specified. We consider a parametric

specification of propensity scores in this paper because, in many empirical applications, a

parametric specification is used rather than a nonparametric specification. The latter specifi-

cation seems to have attracted more attention from the literature of theoretical econometrics

than applied research.

Our proposed multiple testing procedure can determine whether a treatment has a (pos-

itive) effect for any quantile and detect treatment effect heterogeneity across the outcome

distribution and subgroups. Further, it can identify the subgroups and outcome quantiles

for which the treatment effect is estimated to be conspicuous beyond sampling variations.

Finally, it lets us determine which subgroups exhibit heterogeneous treatment effects. Our

testing approach thus complements three recent papers inluding Lee and Shaikh (2014) who

proposed a multiple testing procedure for subgroup treatment effects that controls the family-

wise error rate (FWER), i.e. the probability of rejecting at least one true null hypothesis,

in finite samples, and Bitler, Gelbach, and Hoynes (2017) who adopted a multiple testing

procedure based on Bonferroni correction to test for treatment effect heterogeneity across

subgroups and across time. Goldman and Kaplan (2018) subsequently developed a multiple

testing procedure for quantiles at different distributions in two-sample Kolmogorov-Smirnov

tests.

In an empirical application, we reexamine data from Andrabi, Das, and Khwaja’s (2017)

Pakistani school report card field experiment and present evidence that correcting for mul-

tiple testing is empirically important and policy relevant. Specifically, 75 percent of the

estimated statistically significant QTEs of information provision on children’s test scores be-

3For example, Koenker and Xiao (2002), Chernozhukov and Fernandéz-Val (2005), Chernozhukov,
Fernandez-Val, and Melly (2013), Lee and Shaikh (2014), Ding and Miratrix (2016) and Chung and Olivares
(2020) did not consider the case of the inverse weighting by propensity scores. Crump et al. (2008) focused
on testing for treatment effect heterogeneity for conditional treatment effects rather than QTE.
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come insignificant once multiple testing corrections are applied. These findings also demon-

strate that the significantly positive effects of providing information to parents reported in

Andrabi, Das, and Khwaja (2017) are concentrated in the bottom quintile of the test score

distribution. Further, we find clear evidence of treatment effect heterogeneity in the full

sample and every subgroup that we consider. Taken together, our results shed new light

on the effectiveness of accountability programs, further indicating how schools and parents

respond to the release of information on student performance.

The empirical results of this paper contribute to a burgeoning empirical literature sur-

veyed in Figlio and Loeb (2011) that explores how school accountability programs impact

education outcomes. Economists have long argued that policies designed to increase competi-

tion in markets for education can improve educational outcomes by increasing disadvantaged

students’ access to high quality schools, and by causing under-performing schools to become

more effective or to shrink as families “vote with their feet” (Friedman, 1955; Becker, 1995;

Hoxby, 2003). Further, by disclosing information about student and school performance,

educators may change their effort because this affects the (implicit) market incentives faced

by schools. Indeed, empirical evidence shows that providing information about school-level

achievement directly to parents can influence school choice in the United States (Hastings

and Weinstein, 2008), Canada (Friesen et al., 2012), the Netherlands (Koning and Van der

Wiel, 2012), Brazil (Camargo et al., 2018), and Pakistan (Andrabi, Das, and Khwaja, 2017).4

However, school performance has also been found to not be the main determinant of choice

and that preferences regarding schools are heterogeneous across socioeconomic groups in the

United States (Hastings, Kane, and Staiger, 2009), Chile (Schneider, Elacqua, and Buckley,

2006), Pakistan (Carneiro, Das, and Reis, 2013), and the United Kingdom (Gibbons and

Machin, 2006).

The rest of this paper is organized as follows: In Section 2, we introduce the general

testing procedures for treatment effect heterogeneity across quantiles of the outcome dis-

tribution and subgroups. In Section 3, we illustrate the value of the testing procedure by

reexamining the Andrabi, Das, and Khwaja (2017) experimental data. We describe the ex-

periment and economic model that underlie the data being investigated. This model predicts

heterogeneous treatment effects both within and across subgroups. The concluding Section

4 summarizes the contribution of using these testing approaches in empirical microeconomic

research and discusses directions for future methodological work that can aid practitioners.

4The amount of parental response may depend on the type of information provided. Mizala and Urquiola
(2013) provide evidence from Chile that when absolute measures of school achievement are already widely
available, there are no changes in enrollment level and socioeconomic composition from receiving an additional
highly publicized award.
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2 Methodology

2.1 Testing for Treatment Effect Heterogeneity

To develop a multiple testing procedure for various hypotheses of QTEs, we consider the

following data generating set-up. Let Di be a random variable that takes values in t0, 1u,

where Di “ 1 indicates participation in the program by individual i and Di “ 0 being left

in the control group. Let Yi be the observed outcome of individual i defined as

Yi “ Y1iDi ` Y0ip1´Diq,

where Y1i denotes the potential outcome of individual i treated in the program and Y0i that

of the same individual not treated in the program. Let Xi be a vector of observed covariates

of individual i. The researcher observes a random sample of pYi, Di, Xiq
n
i“1. We make the

following standard assumptions of selection on observables and common support.

Assumption 2.1. (i) pY1i, Y0iq is conditionally independent of Di given Xi.

(ii) There exists ε ą 0 such that for all x P X and d P t0, 1u, ε ď pdpxq ď 1 ´ ε, where

pdpxq “ P tDi “ d|Xi “ xu.

Further, we assume that Xi can be partitioned as Xi “ pX1i, Ziq, where Zi is a discrete

random subvector and X1i indicates the vector that is not included in Zi. The subvector

Zi determines to which subgroup individual i belongs. For each z in the support of Zi,

τ P p0, 1q, and d P t0, 1u, we define

qdpτ, zq “ inftq P R : P tYdi ď q|Zi “ zu ě τu.

Hence q1pτ, zq and q0pτ, zq are the quantiles of the outcome variable in the treatment and

control groups conditional on subgroup z. Note that we take τ to run in a continuum. The

subgroup QTE at a quantile-subgroup pair pτ, zq is then defined by

q∆
pτ, zq “ q1pτ, zq ´ q0pτ, zq.

Let τL, τU be such that τL ă τU and τL, τU P p0, 1q and let Z be the support of Zi. We

take S “ rτL, τU s ˆ Z to be the set of quantile-subgroup pairs pτ, zq that we focus on. We

are interested in the hypothesis of the following form: for each pτ, zq P S,

H0pτ, zq : γpq∆; τ, zq “ 0, vs H1pτ, zq : γpq∆; τ, zq ‰ 0, (1)
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where γpq∆; τ, zq is a functional of q∆ that depends on pτ, zq. Using an appropriate func-

tional γpq∆; τ, zq, the hypothesis expressed in (1) also allows for one-sided hypothesis tests.

Examples of specific hypothesis testing problems involving QTE are provided in Table 1.

The examples illustrate three tests for quantiles and QTEs for individual subgroups as well

as three tests for the special case when Zi “ 1, which defines quantiles and QTEs for the

full sample.

2.1.1 Joint Hypothesis Testing

We can combine the individual hypotheses into a joint hypothesis:

H0 : Γpq∆;Sq “ 0, vs H1 : Γpq∆;Sq ‰ 0, (2)

where for each S 1 Ă S, we define

Γpq∆;S 1q “ sup
pτ,zqPS1

γpq∆; τ, zq. (3)

The null hypothesis says that for all pτ, zq P S, H0pτ, zq expressed in (1) is true. As we

shall see later, joint hypothesis testing is useful for testing the presence of QTE or QTE

heterogeneity.

2.1.2 Multiple Hypothesis Testing

Often, we are interested in finding out which quantile-subgroup pair pτ, zq is responsible for

the rejection of the joint null hypothesis expressed in (2). To address this question, let us

consider the following multiple hypothesis testing problem. Suppose that

S “ tSw Ă S : w P W u, (4)

where W is an index set, and Sw is a subset of S such that Sw X Sw1 “ ∅ whenever w ‰ w1.

Our focus is to find w P W such that the violation of the joint null hypothesis expressed in

(2) is due to the violation of H0pτ, zq for some pτ, zq P Sw. For this, we first define

WP “ tw P W : γpq∆; τ, zq ‰ 0, for some pτ, zq P Swu.

Our goal here is to find a data-dependent set Ŵ that satisfies

lim sup
nÑ8

P tŴ zWP ‰ ∅u ď α. (5)
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The probability in equation (5) is the probability of mistakenly declaring the violation of

H0pτ, zq for some pτ, zq P Sw for every w P Ŵ , and is called the FWER in the literature on

multiple testing. We aim to construct such a set Ŵ that controls the FWER under a small

number α asymptotically.

2.2 A Bootstrap Step-Down Procedure for Multiple Testing

2.2.1 Estimation of QTE and Bootstrap Joint Testing

The identification and inference on q∆pτ, zq for each quantile are established by Firpo (2007).

Here we propose joint hypothesis testing and multiple hypothesis testing procedures and

provide conditions under which the FWER is asymptotically under control.5

To motivate estimation of q∆pτ, zq, note that we can identify qdpτ, zq by

qdpτ, zq “ arg min
q
Erωdiρτ pYi ´ qq |Zi “ zs, d “ 1, 0,

where ωdi “ 1tDi “ du{pdpXiq and ρτ pxq “ x ¨ pτ ´ 1tx ď 0uq is the check function. Thus,

we estimate qdpτ, zq by

q̂dpτ, zq “ arg min
q

1
řn
i“1 1 tZi “ zu

n
ÿ

i“1

ω̂diρτ pYi ´ qq 1 tZi “ zu ,

with ω̂di “ 1tDi “ du{p̂dpXiq, and p̂dpxq is the estimated propensity score.6 Following Firpo

(2007), we obtain

q̂∆
pτ, zq “ q̂1pτ, zq ´ q̂0pτ, zq.

To construct a joint test or a multiple test, we calculate a critical value using a bootstrap

method. Specifically, we first resample with replacement from the original sample B times

and construct the propensity score weighted outcomes Ŷ ˚di “ Y ˚i 1tD˚i “ du{p̂˚dpX
˚
i q, where

tpY ˚i , D
˚
i , X

˚
i qu

n
i“1 denotes each bootstrap sample and p̂˚1pX

˚
i q the estimated propensity score

using the bootstrap sample. Then we construct

q̂∆˚
pτ, zq “ q̂˚1 pτ, zq ´ q̂

˚
0 pτ, zq,

5Extending the results to the case of cluster dependence is straightforward, as long as two conditions are
satisfied: first, the observations are all identically distributed across the cross-sectional units, and second,
the number of the clusters increase to infinity as the number of observations does so. For the bootstrap
inference, one can simply use block bootstrap in which one resamples clusters with replacement instead of
individual sample units.

6Following Smith and Todd (2005), the propensity score p̂pxq is estimated using data from the full sample.
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where q̂˚1 pτ, zq and q̂˚0 pτ, zq are the τ -th empirical quantiles of tŶ ˚1iu
n
i“1 and tŶ ˚0iu

n
i“1, respec-

tively, within the samples with Z˚i “ z.

For joint hypothesis testing expressed in (2), we construct test statistics

T “ Γpq̂∆;Sq, and T ˚ “ Γpq̂∆˚
´ q̂∆;Sq,

and use as critical value the p1´ αq-th percentile from the bootstrap distribution of T ˚. By

subtracting q̂∆
τ , we re-center the bootstrap test statistic in order to impose the least favorable

configuration under the null hypothesis.

2.2.2 Bootstrap Multiple Testing Procedure for QTEs

The multiple testing procedure adapts the step-down method of Romano and Wolf (2005)

and Romano and Shaikh (2010) to our set-up. First, let q̂∆˚
b be the same as q̂∆˚ except that

it is made explicit that q̂∆˚
b is constructed using the b-th bootstrap sample. For each subset

W 1 Ă W , we define

T ˚b pW
1
q “ sup

wPW 1

Γpq̂∆˚
b ´ q̂∆;Swq.

Setting W̃1 “ W , we take ĉ1´αpW̃1q to be the smallest c such that

1

B

B
ÿ

b“1

1
!

T ˚b pW̃1q ď c
)

ě 1´ α.

That is, at ĉ1´αpW̃1q, the fraction of test statistics across the B bootstrap samples that

exceed that critical value is at most α. Then, we retain those quantiles that do not exceed

the critical value ĉ1´αpW̃1q, i.e., we define

W̃2 “

!

w P W : Γpq̂∆;Swq ď ĉ1´αpW̃1q

)

,

so that W̃2 is a subset of W̃1. Now, we take ĉ1´αpW̃2q to be the smallest c such that

1

B

B
ÿ

b“1

1
!

T ˚b pW̃2q ď c
)

ě 1´ α.

Using this, we define

W̃3 “

!

w P W : Γpq̂∆;Swq ď ĉ1´αpW̃2q

)

.
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This procedure is repeated until at step k, we obtain

W̃k “

!

w P W : Γpq̂∆;Swq ď ĉ1´αpW̃k´1q

)

such that no further element of W̃k is eliminated (i.e. W̃k “ W̃k´1). We take

Ŵ “ W zW̃k. (6)

To incorporate multiple testing for QTE heterogeneity (hypothesis (H.6) in Table 1), we

take the definition in (3) and follow the same step-down procedure after replacing Γpq̂∆;Swq

by Γpq̂∆ ´ q∆;Swq and Γpq̂∆˚
b ´ q̂∆;Swq by Γpq̂∆˚

b ´ q̂∆ ´ pq∆˚
b ´ q∆q;Swq, where

q∆
pzq “

1

τU ´ τL

ż τU

τL

q̂∆
pτ, zqdτ, and q∆˚

pzq “
1

τU ´ τL

ż τU

τL

q̂∆˚
pτ, zqdτ.

2.2.3 Asymptotic Control of FWER

In this subsection, we provide conditions that ensure the set Ŵ (in (6)) obtained through

the step-down procedure controls the FWER asymptotically. For brevity, we focus on a

situation where Zi “ 1 for all i “ 1, ..., n, allowing us to suppress the argument z from

qdpτ, zq, q
∆
d pτ, zq, and γpq∆; τ, zq, writing them as qdpτq, q

∆
d pτq, and γpq∆; τq. We also take

W “ rτL, τU s. For each τ P rτL, τU s, and d P t0, 1u, we rewrite

q̂dpτq “ arg min
qPR

Q̂dpq; τq,

where, for q P R,

Q̂dpq; τq “
n
ÿ

i“1

1tDi “ du

p̂dpXiq
ρτ pYi ´ qq.

We also define its population version:

qdpτq “ arg min
qPR

ErQdpq; τqs,

where

Qdpq; τq “
n
ÿ

i“1

1tDi “ du

pdpXiq
ρτ pYi ´ qq.

10



Throughout, we assume that the propensity score is parametrically specified as follows:7

P tDi “ 1|Xi “ xu “ Gpx; β0q,

where β0 is known to lie in a parameter space Θ Ă Rdβ . Let β̂ be the estimator of β0, so

that we take

p̂dpxq “ Gpx; β̂qdp1´Gpx; β̂qq1´d, d P t0, 1u.

We next introduce bootstrap estimator β̂˚ that is constructed in the same manner as β̂, with

the exception that we use the bootstrap sample pY ˚i , X
˚
i , D

˚
i q
n
i“1 (i.e., the i.i.d. draws from

the empirical distribution of pYi, Xi, Diq
n
i“1) in place of the original sample pYi, Xi, Diq

n
i“1. Let

Fn be the σ-field generated by pYi, Xi, Diq
n
i“1. For a matrix A, we define }A} “

a

trpA1Aq.

We let

Vi “ pYi, X
1
i, Diq

1, and V ˚i “ pY
˚
i , X

˚1
i , D

˚
i q
1.

As for the estimators β̂ and β̂˚, we make the following assumption.

Assumption 2.2. There exists a map ψ such that the following two statements hold.

(i)

?
npβ̂ ´ β0q “

1
?
n

n
ÿ

i“1

pψpViq ´ EψpViqq ` oP p1q,

where }V arpψpViqq} ă 8.

(ii)

?
npβ̂˚ ´ β̂q “

1
?
n

n
ÿ

i“1

pψpV ˚i q ´ ErψpV
˚
i q|Fnsq ` oP p1q.

This assumption is typically satisfied by most
?
n-consistent and asymptotically normal

estimators β̂.

Let G
p1q
k px; βq “ BGpx; βq{Bβk, and for d P t0, 1u,

gd,kpx; βq “
´

G
p1q
k px; βq

¯d ´

´G
p1q
k px; βq

¯1´d

,

7Extending the results to the situation of nonparametrically specified propensity scores is not difficult.
Our focus on parametric specification of the propensity score is motivated by the fact that it is commonly
used in empirical applications, despite receiving less attention in the theoretical econometrics literature.
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and gdpx; βq “ rgd,1px; βq, ..., gd,dβpx; βqs1. Let g
p1q
d px; βq “ Bgdpx; βq{Bβ1. We collect regular-

ity conditions for gdpx; βq and the distribution of Ydi below.

Assumption 2.3. (i) The parameter space Θ for β0 is bounded in Rdβ and

sup
xPX

sup
βPΘ

´

}gdpx; βq} ` }g
p1q
d px; βq}

¯

ă 8.

(ii) The set JdpτU , τLq ” tqdpτq : τ P rτL, τU su is bounded for each d P t0, 1u.

(iii) The density fd of Ydi is continuous on a closed interval containing JdpτU , τLq and

bounded away from zero on JdpτU , τLq.

Define WP “
 

τ P rτL, τU s : γpq∆pτq; τq ‰ 0
(

and let Ŵ be the set contructed using the

step-down procedure explained above. Then let FWER “ P tŴ zWP ‰ ∅u.

Theorem 2.1. Suppose that Assumptions 2.1, 2.2 and 2.3 hold, and that the set of func-

tionals tγp¨; τq : τ P rτL, τU su is equicontinuous.8 Then,

lim sup
nÑ8

FWER ď α.

The condition on the functionals γp¨; τq is satisfied by all the examples listed in Table 1.

Online Appendix B presents the complete proof of Theorem 2.1 that involves several steps.

Briefly, we first obtain the asymptotic linear representation of
?
npq̂∆pτq ´ q∆pτqq that is

uniform over τ P rτL, τU s, using Pollard’s convexity lemma; similarly as in Hahn (1995)

and Kato (2009). We next use the maximal inequality in Massart (2007) as in Guerre and

Sabbah (2012), to additionally establish the asymptotic equicontinuity of the leading process

in the asymptotic linear representation, and its weak convergence to a tight Gaussian process

indexed by τ P rτL, τU s.
9 With these results and using the assumption that γ is a continuous

functional, we verify that the conditions of Theorem 2.1 of Romano and Shaikh (2010) are

satisfied, thereby obtaining the desired result of asymptotic FWER control.

8We endow the space of bounded measurable functions with the sup norm, and view γp¨; τq as a functional
on this space for each τ P rτL, τU s.

9Note the econometric literature focuses mostly on quantile regression models. Modifications to the
standard arguments are needed in our set-up because we estimate a parametric specification of propensity
scores in the first step.
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3 Empirical Application

3.1 Experimental Design and Data

Andrabi, Das, and Khwaja (2017) conduct an experiment in 112 Pakistani villages to study

the impact of providing parents with a detailed two page report card on their child’s per-

formance and child’s school-level performance on a variety of outcomes. Each report card

contained the student’s test score and quintile rank (compared to all tested students) in

three subject areas, as well as for all of the schools in the village presented information

on i) the average score, number of children tested, and iii) quintile rank (across all schools

tested in the sample). In accountability systems, such school level report cards are frequently

postulated to lead to improved parental investment decisions in education. The treatment

exogenously increased information in 56 of the 112 villages, and Andrabi, Das, and Khwaja

(2017) argue that each village can be viewed as an island economy where private and public

schools compete.10

The focus of Andrabi, Das, and Khwaja (2017) is to examine the gradient in the estimated

causal parameter of providing a report card along both the school type and baseline test

score distributions. It is important to stress that the institutional structure of education in

Pakistan offers several unique advantages that Andrabi, Das, and Khwaja (2017) exploit to

facilitate their study of how competition affects equilibrium school and student outcomes at

the market level. Rural villages in Pakistan are typically located at a great distance from

each other or are separated by natural barriers. Carneiro, Das, and Reis (2013) find that

parents of children in primary school in Pakistan often make enrollment decision that places

great weight on the physical distance from home to school. Second, within each village there

are multiple affordable private schools, and an estimated 35 percent of all students were

enrolled in private schools in 2005. Third, school inputs such as teacher education differ

sharply between government and private school and many private schools have a secular

orientation. There are very few if any regulations on the private schools that are generally

not supported by the government.

The idea that the gradient in the effect of increased information from the report card

will differ between public and private schools is consistent with predictions from models of

optimal pricing and quality choices in markets with asymmetric information (e.g., Wolin-

sky, 1983; Shapiro, 1983; Milgrom and Roberts, 1986). These models predict heterogenous

responses from improved information. The quality of initially low performing schools as

measured by student test scores will increase at a larger rate than responses in initially

10These villages are located in one of three selected districts in Pakistan’s most populous province, Punjab.

13



high-quality schools; and under some assumptions on parental demand for school quality the

responses in high quality schools may even be negative. Camargo et al. (2014) develop an

alternative model in the spirit of Holmström (1999) to show how test score disclosure would

lead to heterogenous changes in subsequent student test score performance between public

and private schools.11

Taken together, these economic models predict students and parents responding to in-

formation on school quality and their relative rank within a school, with heterogeneity pre-

dicting larger behavioral responses to receiving a (more) negative signal.12 The extent of

this heterogeneity can vary across subgroups defined by school type, because administrators

in private schools may face greater pressure than public school counterparts and provide a

larger response to having negative information being disclosed. Thus, the general shape of

treatment effect heterogeneity and the resulting QTEs could be shifted to the left or right,

be compressed or stretched, or otherwise be transformed across subgroups without losing

their overall shape. In summary, economic theory predicts treatment effect heterogeneity

both within and between subgroups, motivating the development of tools to assess its ex-

tent in general, as well as in the specific context of the Andrabi, Das, and Khwaja (2017)

information provision experiment.13

Last, beyond the advantages of the institutional structure, Andrabi, Das, and Khwaja

(2017) distinguishes itself from the growing body of work evaluating randomized interventions

in developing countries by having collected a rich detailed longitudinal dataset. Beginning

in 2004, approximately 12,000 grade 3 students were surveyed. The follow-up rate was

over 96 percent in subsequent years. Schools also completed annual surveys providing rich

information on their operations as well as their inputs. A subset of households were also

randomly selected for parents to provide additional information on home inputs. In our

study, to facilitate comparisons we utilize the same control variables as Andrabi, Das, and

Khwaja (2017) and use a standardized grade 4 test score as our primary outcome variable

to fully explore treatment effect heterogeneity.

11The model they consider is pitched to be a reduced-form version of a dynamic model of managerial
effort along the lines of Holmström (1999).

12Camargo et al. (2018) present evidence of heterogenous responses in Brazil and Koning and Van der
Wiel (2012) also find that test scores increase at a higher rate in schools ranked poorly in national newspapers
in the Netherlands.

13In Online Appendix D, we provide an additional empirical demonstration where we test for treatment
effect heterogeneity that is also motivated by an economic model. Specifically, we use a simple static model
of labor supply that predicts heterogenous responses to changes in the parameters of a welfare reform policy
within and between subgroups. To illustrate the tests we explore the extent of heterogeneity in labor supply
responses in the Jobs First welfare experiment across percentiles of the earnings distribution.
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Table 2: Child-Level Summary statistics

No report card Report card Difference
Mean/Std.dev./N Mean/Std.dev./N p-value

Average test score, round 1 ´0.0134 ´0.0229 0.569
(0.942) (0.886)
5786 6324

Average test score, round 2 0.186 0.229 0.012
(1.004) (0.943)
6266 6538

Female child 0.425 0.431 0.438
(0.494) (0.495)
8443 8760

Child’s age 9.680 9.671 0.702
(1.505) (1.446)
6616 7117

Village literacy rate 38.46 36.26 0.000
(12.88) (10.63)
8443 8760

Number of households in village 708.3 797.3 0.000
(375.8) (591.0)
8443 8760

School Herfindahl index 0.181 0.183 0.092
(0.0680) (0.0676)

8443 8760

Village wealth 4498.5 4638.6 0.000
(median monthly expenditure) (1649.4) (1454.8)

8443 8760

Government school 0.675 0.698 0.003
(excluded category: private) (0.468) (0.459)

6617 7118

School size 251.6 248.7 0.386
(199.5) (194.9)
6617 7118

High scoring school 0.499 0.486 0.096
(above 60th percentile) (0.500) (0.500)

8443 8760

Mother’s education above middle 0.325 0.333 0.498
school (0.469) (0.471)

3097 3278

Father’s education above middle 0.630 0.590 0.001
school (0.483) (0.492)

3090 3278

Source: Andrabi, Das, and Khwaja (2017).
Notes: Means, standard deviations (in parentheses), and numbers of observations for children in villages that did not and
did receive the information experiment treatment. p-values for the t-test of the null hypothesis that the means do not differ
between treatment and control group.
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Table 2 shows child-level summary statistics by treatment status for our outcome and

subgroup variables. Our outcome variable, “Average test score, round 2,” is significantly

higher among children in the treated group (whose parents received the school report cards),

which is consistent with the findings in Andrabi, Das, and Khwaja (2017). The village-level

variables including literacy rate, number of households, school Herfindahl index, and average

wealth differ significantly between treatment and control group. Recall that randomization

occurred on the village level and not on the child level, and these significant differences

disappear in village-level comparisons. We also find significant differences in the fraction of

government schools, high-scoring schools, and fathers with above-middle school education

by treatment status. Our testing approach incorporates propensity score weighting, which

allows us to balance treatment and control group based on these observed variables.

3.2 Results

In this section, we obtain new insights extending the findings of Andrabi, Das, and Khwaja

(2017) by conducting hypothesis tests based on the framework described in Section 2. Our

analysis focuses on the average of standardized test scores across three subjects after random

assignment as our outcome variable, and we estimate QTEs of access to report cards for

percentiles 1 to 99 using the Firpo (2007) estimator.14 To balance covariates between the

treatment and control groups, we estimate the propensity score p̂dpxq using a parametric

logit specification. Specifically, we include district fixed effects, and village wealth, literary

rate, school Herfindahl index, and number of households. For the results that follow, we set

the level of each test to α “ 0.05. All test results are based on bootstraps with B “ 9999.15

First, we consider QTEs for the entire sample, i.e. we set Zi “ 1 in the notation of Section

2. Figure 1 shows our estimated QTEs for the full sample along with 90 percent pointwise

confidence intervals.16 We find pointwise significant and positive treatment effects extending

14To infer treatment effects for specific individuals from QTEs we have to assume that there are no rank
reversals in the test score distribution between the treatment and control groups. While this assumption
is likely violated, positive QTEs imply that the treatment has a positive effect for some interval of the test
score distribution.

15Andrabi, Das, and Khwaja (2017) include district fixed effects treating the data as i.i.d. across districts
and do not model inter- and intra-cluster correlation further. We follow this approach to extend their findings
and draw bootstrap samples of individuals instead of villages or districts. When using a block bootstrap that
resamples entire villages, the QTE is statistically significant only for one percentile even without adjustments
for multiple testing. For completeness, we show the results under block bootstrapping in Online Appendix
C. See also footnote 5.

16We show 90 percent confidence intervals to make them comparable to the multiple testing results, which
are obtained from one-sided tests that control the FWER at 5 percent. The pointwise confidence intervals
are calculated as the 5th and 95th percentile of the distribution of bootstrapped QTEs.
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Figure 1: Quantile Treatment Effects and Multiple Testing Results, No Subgroups

from the first to the 75th percentile. Starting with the 83th percentile the point estimates

for QTEs become negative but the pointwise confidence intervals include zero.

Table 3 summarizes the results for joint hypothesis testing for positive and heterogeneous

QTEs. First, we test the null hypothesis of no positive treatment effect at any percentile, i.e.

(H.1) in Table 1. As shown in Figure 1, the largest QTE (which occurs at the third percentile)

equals 0.387. With the bootstrap critical value of 0.230, we reject the null hypothesis at the

5 percent level. The associated p-value equals 0.003. Thus, there is clear evidence that the

information provision had the desired effect of increasing student performance for at least

some individuals. Next, we present results from the test of no treatment effect heterogeneity

across quantiles, i.e. (H.2) in Table 1. The test statistic, which is calculated as the largest

deviation from the mean estimated QTE (c “ 0.0583), equals 0.329. With a bootstrap

critical value of 0.240, we also reject this null hypothesis at 5 percent with a p-value of

0.012. This result implies that treatment effects are heterogenous across quantiles, thereby

indicating that individuals vary in their response to the report cards.

Having rejected the null hypothesis of no treatment effect heterogeneity, we now identify

the range of the test score distribution where positive treatment effects are located, i.e. we

test (H.3) in Table 1. The shaded area in Figure 1 corresponds to the set Ŵ “ W zW̃k. This

17



Table 3: Testing for Presence of Positive QTEs and QTE Heterogeneity Without Subgroups

Test statistic Critical value at 5% p-value

Test for positive QTE (H.1) 0.38747 0.22957 0.0031003

Test for QTE heterogeneity (H.2) 0.32917 0.24014 0.011701

Notes: This table shows test results for hypotheses with γpq∆; τ, zq “ maxtq∆pτ, 1q, 0u and γpq∆; τ, zq “
|q∆pτ, 1q´c|, i.e. we test that there is no positive treatment effect for all quantiles and that the treatment
effect is the same for all quantiles, respectively, i.e. we test hypotheses (H.1) and (H.2) in Table 1.

test accounts for potential dependencies across quantiles of the same outcome variable and

the number of individual hypotheses (|S| “ 99).

Examining the plot we observe that the set of significantly positive QTEs supports the

distributional effects predicted by the underlying theory. However, we find that individuals

located above the 19th percentile of the test score distribution do not exhibit significant

QTEs once we adjust for multiple testing. The smallest and largest quantiles at which

QTEs are significantly positive correspond to gains of 0.088 and 0.387, respectively. Hence,

we can conclude that the benefits of this particular form of accountability are more confined

than one would otherwise find based on traditional statistical inference that ignores potential

dependencies and testing at multiple percentiles. We find that there is a more limited range

of individuals whose academic outcomes truly increase when assigned to the treatment group.

Next, we present results incorporating subgroups. Economic theory predicts that in-

dividuals with different observed characteristics may react differently to the same set of

information. In particular, individual and village characteristics may determine for which

range of the test score distribution we observe an increase or decrease in test score perfor-

mance. Following Andrabi, Das, and Khwaja (2017), we consider subgroups defined by child

characteristics, type of school, and characteristics of the villages.17

Figure 2 presents QTEs conditional on child gender and child baseline test scores. These

figures provide an easy and intuitive way to check which subgroups benefit from being as-

signed to receive report cards (heterogeneity across subgroups). In addition, we can inspect

the figure for each subgroup to determine the portion of the student test score distribution in

which individuals exhibit positive subgroup-specific QTEs (heterogeneity within subgroup).

17Note that in our application the number of hypotheses being tested is quite small particularly relative
to genomic studies from genome wide association studies. If the number of hypotheses were large it is well
known that FWER controlling procedures typically have low power, and in response Gu and Shen (2017)
propose an optimal false discovery rate controlling method.
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(b) By Child’s Baseline Test Score

Figure 2: Quantile Treatment Effects and Multiple Testing Results, by Child Characteristics

Shaded areas continue to denote significant QTEs based on our multiple testing procedure

of testing hypothesis (H.4) in Table 1.

Figure 2a presents QTEs for child gender subgroups. The effect of the access to report

cards on test scores is larger for girls throughout the test score distribution. For boys, there

is no statistically significant positive effect above the 12th percentile (based on the point-
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wise confidence intervals). When adjusting inference for multiple testing, we find significant

effects among girls in the 1st to 14th percentile and boys in the 2nd to 8th percentile. The

second panel considers subgroups defined by whether the child’s baseline test score was above

or below the median. The estimated QTEs and point-wise confidence intervals in Figure 2b

show that it is mostly children with a below-median baseline test score who benefit from

the report card experiment. When we adjust inference for multiple testing, however, only

children in the very top percentile of the post-experiment test score distribution who scored

below the median at baseline exhibit significantly positive QTEs. In addition, children

who scored above the median at baseline and whose post-experiment score falls in the first

percentile also see a significant effect of information provision.18

Next, we construct subgroups based on village characteristics. Figure 3 shows the esti-

mated subgroup-specific QTEs and multiple testing results. We find significant treatment

effects predominantly for children in villages with below-median wealth, above-median lit-

eracy rates, below-median school concentration (measured by the school Herfindahl Index),

and above-median size. From a policy perspective, it is may be important to know that

report cards improve children’s test scores in relatively poor villages. At the same time, pro-

viding written report cards to parents may not be a successful strategy in villages with low

literacy rates. In general, these results are important because they can show policymakers

which subgroups should be targeted with an accountability program.

Finally, we consider subgroups defined by the combination of school ownership type (gov-

ernment or private) with one of two different measures of student performance (school level

and relative). We first create subgroups by interacting school ownership with school perfor-

mance in the baseline test to yield four subgroups.19 Figure 4 illustrates the estimation and

multiple testing results. We find that significantly positive QTEs are concentrated among

low-scoring children in relatively high-performing government schools and high-scoring chil-

dren in low-performing private schools. Moreover, consistent with the negative average

treatment effect reported in Andrabi, Das, and Khwaja (2017) we do not find any positive

effects among children in high-performing private schools.

The second student performance measure we consider pertains to the child’s performance

at the baseline test relative to his or her school’s performance. Specifically, we construct

subgroups by dividing the sample into groups defined by the combination of school ownership

18The data also include information on parental educational attainment and monetary and time inputs
into the children’s human capital. However, the parental survey was only fielded to a third of the sample,
and the smaller sample size does not give us enough power to conduct our multiple testing corrections.

19Specifically, following Andrabi, Das, and Khwaja (2017) a school is defined as high-performing if its
mean baseline test score exceeds the 60th percentile of all schools’ mean scores.
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Figure 4: Quantile Treatment Effects and Multiple Testing Results by School Type and
Performance

and whether the child performed above or below the median test score of their respective

school at baseline (high and low achieving students, respectively).20 Figure 5 shows that

children in government schools only benefit from the report cards if they are located in the

bottom of the test score distribution irrespective of whether they scored above or below

the median of their school’s test score at baseline. In addition, the QTEs are significantly

positive under corrections for multiple testing among children who score above the 90th

percentile and are enrolled in a private school where they scored below the within school

median at baseline.

Taken together, our results in Figures 4 and 5 provide additional nuance on the findings

of Andrabi, Das, and Khwaja (2017) related to which students in which schools gain from

access to report cards. Bitler, Gelbach, and Hoynes (2006) motivate the valuable additional

policy insights provided by distributional effects as showing what mean estimates can miss.

In Figure 4, our evidence of treatment effect heterogeneity is masked if one estimates average

20We thank Jishnu Das for pointing out the distinction between these two baseline performance measures.
Table VII in Online Appendix III of Andrabi, Das, and Khwaja (2017) shows average treatment effects by
children’s baseline performance relative to their school.
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Figure 5: Quantile Treatment Effects and Multiple Testing Results by School Type and
Child’s Performance Relative to School Performance

treatment effects even conditional on school type and performance. Further, in Figure 5,

while the main result is consistent with Andrabi, Das, and Khwaja (2017) who find that

low achieving students benefit from the report card intervention more than high achieving

students, we provide additional insights by showing that this benefit is confined to the top

decile among low achieving students.

We now formally test for treatment effect heterogeneity between and within subgroups.

Table 4 presents the results for testing hypothesis (H.5) in Table 1. This null hypothesis

posits that there are no differences across subgroups that can explain the observed hetero-

geneity of QTEs in the full sample. We can reject the hypothesis for all sets of subgroups

at a level of 5 percent. We conclude that differences across subgroups do not explain the

observed distributional treatment effects in the whole sample.

The test results shown in Table 5 additionally account for potential dependencies within

and across subgroups. These test results provide additional insight because they identify the

individual subgroups within a class of subgroups that exhibit treatment effect heterogeneity.

That is, we test hypothesis (H.6) in Table 1. In these results, a p-value below 0.05 indicates

that the corresponding subgroup exhibits a statistically significant amount of treatment effect
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Table 4: Testing for Treatment Effect Heterogeneity Between Subgroups

Subgroup category Test statistic Critical value at 5% p-value

Child’s gender 0.45014 0.29377 0.0026003

Child’s baseline test score 1.2681 0.41076 0

Village wealth 1.2681 0.33394 0

Village literacy rate 1.2681 0.3618 0

School Herfindahl Index 1.2681 0.26926 0

Village size 1.2681 0.39368 0

School type and school performance 1.2681 0.73724 0.00090009

School type and child’s performance 1.5732 0.6843 0.00020002
relative to school

Notes: This table shows test results for hypotheses with γpq∆; τ, zq “ |q∆pτ, zq´cpzq|, i.e. these tests show
for which subgroups categories we can reject treatment effects that are homogenous within subgroups
for all subgroups, i.e. we test hypothesis (H.5) in Table 1.

heterogeneity across the test score distribution. In each and every subgroup category, we find

evidence of treatment effect heterogeneity. These results clearly suggest a substantial amount

of treatment effect heterogeneity between subgroups and across the student performance

distribution within subgroups.

4 Conclusion

In this paper we describe general tests for treatment effect heterogeneity in settings with se-

lection on observables. These tests allow researchers to provide policymakers with guidance

on complex patterns of treatment effect heterogeneity both within and across subgroups.

In the present context, the results can guide policymakers in adjusting how information

on student performance is provided, for example by introducing more (or different) condi-

tions across villages. We establish the asymptotic validity of this bootstrap multiple testing

procedure for QTEs. In contrast to much of the existing literature on procedures to test

for heterogeneous treatment effects, these tests make corrections for multiple testing and

therefore provide valid inference under dependence between subgroups and quantiles.

Using data from Andrabi, Das, and Khwaja (2017), we not only present evidence of con-

siderable heterogeneity of the effects of access to report cards on student achievement for
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Table 5: Testing Which Subgroups Exhibit Treatment Effect Heterogeneity

Subgroup category Test statistic p-value

Child’s gender
Female 0.450 0
Male 0.304 0

Child’s baseline test score
Above median 0.516 0
Below median 0.506 0

Village wealth
Above Median 0.19 0.01
Below Median 0.73 0

Village literacy rate
Above median 0.545 0
Below median 0.121 0.01

School Herfindahl Index
Above median 0.224 0
Below median 0.494 0

Village size
Above median 0.5 0
Below median 0.155 0.02

School type and school performance
High scoring government 1.127 0
Low scoring government 0.237 0
High scoring private 0.0749 0
Low scoring private 1.268 0

School type and child’s performance relative to school
Government/high achieving 0.834 0
Government/low achieving 0.260 0
Private/high achieving 0.0949 0
Private/low achieving 1.573 0

Notes: This table shows results of tests for which subgroups in each subgroup category we can reject
homogenous treatment effects, i.e. we test hypothesis (H.6) in Table 1. p-values are calculated using a
grid with step size 0.005. Hence an entry of zero indicates that the corresponding p-value is below 0.005.
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most subgroups, but show in which subgroups and which test score quantiles within sub-

groups the benefits of information provision are highest. In addition, our empirical analysis

emphasizes the importance of correcting for multiple testing. Testing across different sub-

groups is policy relevant, and while Crump et al. (2008) provide an approach to select which

subpopulations to study, our tests go further by considering treatment effect heterogeneity

conditional on observable characteristics.

Given the considerable attention policymakers pay to developing accountability programs

worldwide, our results highlight for which groups targeted information provision would likely

yield higher returns. Further, these returns should exceed programs that disclose school

quality to parents of all students. That said, education policymakers face additional challenge

from incorporating evidence of heterogeneous treatment effects into the design of any policy

that may lead to different school choice. While Pareto improvements in welfare can easily

be achieved in social and labor policy using ex-post targeted transfers, the effectiveness of

redistributing students across schools also depends on how peer groups influence academic

outcomes.21

We would like to conclude by emphasizing that our multiple testing approach is generally

applicable in various other ways beyond what this paper demonstrated. First, the tests

can be applied to situations with multiple treatments (e.g., ?) or situations where there

is selection on unobservables that explore if there is heterogeneity in marginal treatment

effects (e.g., Heckman and Vytlacil, 2005; Brinch, Mogstad, and Wiswall, 2017). Second,

instead of using inverse propensity score weighting, we may directly use the conditional

distribution functions or conditional quantile functions to identify the treatment effects as

proposed by Chernozhukov, Fernandez-Val, and Melly (2013). Extending their proposal to

multiple testing procedures to test for treatment effect heterogeneity across the distribution

or quantile function with or without subgroups has the potential to complement this paper

by expanding insights in empirical microeconomics.
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