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1 Introduction

Substantial progress has been made in the machine learning literature on quickly con-

verting text to data, generating real time information on social media content. Yet, there

remains substantial speculation on whether data created from online social media con-

tent provides valuable insights.1 Two challenges persist that limit the use of this data in

both financial and macroeconomic forecasting exercises. First, from the prospective of a

practitioner, the potential value of social media content in forecasting stock market perfor-

mance is likely tied to our understanding of what information it may capture. Without this

interpretation, concerns regarding the generalizability of the social media measure may

emerge. Second, from an econometric perspective, how one should incorporate this new

data which arrives at different frequencies, asynchronously and may exhibit substantial pa-

rameter instability due to the time-varying population of social media users in forecasting

exercises remains an open question.

In this study, we address these two challenges by exploring the benefits of incorporating

an aggregate measure of social media sentiment, the Wall Street Journal-IHS Markit U.S.

Sentiment Index (USSI) in forecasting the conference board consumer confidence index

(CCI).2 The CCI is reported regularly in the financial press and is a variable that has been

empirically found to have significant impacts on behavior of financial markets. The likely

importance of the CCI likely relates to one of the key arguments in behavioral finance

which postulates that change in sentiment can profoundly affect people’s behavior and

decision making. Until 2013, many Wall Street firms willingly paid an extra subscription

fee to Thomson Reuters to gain access to monthly consumer confidence data a full two

seconds earlier than the rest of its subscribers at 9:54:58 a.m., as opposed to 9:55:00 ex-

1A growing body of research makes claims that this data can improve the performance of high-frequency
trading algorithms. For example, Mishne and Glance (2006) proposed using Blogger sentiment to predict
movie sales; Bollen, Mao, and Zheng (2011) use data from only 19 days and reach the conclusion that
Twitter mood predicts the stock market; Karabulut (2013) showed that the stock market activity can also be
predicted by measures extracted from Facebook messages.

2Briefly, each hour the USSI uses a deep learning algorithm developed in Felbo, Mislove, ogaard, Rahwan,
and Lehmann (2017) to analyze a random sample of 10% of all Twitter messages to measure the national
real-time mood, as well as subgroups defined by state or gender. Further details are provided in Section 2.
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actly. Thus, this new information was clearly valuable and there is strong industry interest

in improving forecasts of the CCI.

Data timing presents a serious challenge in using hourly measures of the USSI to fore-

cast the monthly CCI, which is measured at a much lower frequency.3 To forecast the

CCI requires the analyst to convert hourly USSI measure to a monthly aggregate mea-

sure. To develop such an aggregate measure Ghysels, Santa-Clara, and Valkanov (2004)

propose a data-driven process coined mixed-data sampling (MIDAS) and shows that it

outperforms simple averaging. The MIDAS technique computes a weighted average that

generally places a larger weight on the most recent observations. MIDAS was not devel-

oped for social media sentiment measures such as the hourly USSI that differs from other

financial and macroeconomic variables used to forecast CCI by displaying significant asym-

metric response to current events that cause large jumps in the sentiment levels that may

have an important impact on dynamics of consumer behavior.4

In this paper, we propose a new method to assign weights with MIDAS that allows

for heterogeneous effects (henceforth, H-MIDAS) of different high frequency observations

on the low frequency dependent variable. This flexibility in how weights are constructed

reduces concerns from using conventional MIDAS methods that struggle with parameter

instability that may reflect jumps, which can be problematic if the frequency mismatch is

severe. Further, we prove that the simple averaging estimator introduces asymptotic bias

to the coefficient compared with H-MIDAS.

Our empirical application uses both econometric strategies and machine learning algo-

rithms to ascertain whether incorporating an aggregated measure of very high-frequency

social media data can create a more lucrative forecast of the CCI.5 Our main finding is that

3Social media data can be collected and analyzed on a second by second basis. At very high frequencies
there is substantial temporal volatility in social media data. As such, we focus on the hourly USSI measure
that has social media sentiment appear as a highly persistent process with a long memory decay.

4The asymmetry arises in part since there are different populations posting Twitter messages during the
standard work-day versus late at night.

5In a highly cited paper, O’Connor et al. (2010) report that the correlation between Twitter sentiment
from the population and the Gallup Poll of consumer confidence is strong and approximately 0.8. This
study simply measures sentiment as the ratio positive versus negative messages on a day and then correlates
a moving average of these daily measures with a monthly measure of consumer confidence. Our study
presents a significant advance by i) using a lower frequency of social media data, ii) measuring sentiment
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incorporating social media sentiment can significantly improve forecast accuracy. This re-

sult contributes to a rapidly growing empirical literature on the value of social media in

financial econometric applications,6 that we additionally contribute to by providing a new

data driven method to aggregate measures of high frequency social media data.

Further, we find that there are also significant improvement in forecasting accuracy

once our proposed H-MIDAS procedure is applied to other high frequency financial and

macroeconomic variables that are incorporated in the forecasting model. This evidence is

suggestive that allowing for more general forms of heterogeneity in the weights used to

undertake MIDAS that can vary across explanatory variables is empirically important.

This paper is organized as follows. In the next section, we describe the data used to

conduct forecasts as well as how both the consumer confidence index and social media

sentiment are measured. Section 3 provides an overview of different strategies including

our proposed H-MIDAS that is designed to incorporate high frequency social media data

in forecast models for low frequency measures. Section 4 details the out of sample fore-

casting exercise that evaluates alternative approaches to undertake MIDAS and contrasts

econometric estimators with machine learning algorithms. The empirical results are pre-

sented and discussed in Section 5. We find that (i) including consumer sentiment measures

from Twitter greatly improves forecast accuracy; (ii) there are substantial gains from the

new H-MIDAS procedure relative to common alternatives; and (iii) improvements in fore-

cast accuracy from using machine learning approaches relative to econometric strategies.

We conclude by discussing the merits and trade-offs researchers face when incorporating

social media data in forecasting models and suggesting directions for future research.

from social media, iii) flexibly handle mixed frequencies and iv) considering multivariate relationships with
both econometric and machine learning methods rather than reporting a bivariate correlation.

6For example, Brown and Cliff (2004) present significant evidence of the importance of sentiment in
measuring U.S. stock market returns. Lemmon and Portniaguina (2006) discuss the connection between
consumer confidence and asset prices. Stambaugh, Yu, and Yuan (2012) and Stambaugh, Yu, and Yuan
(2014) study the predictive power of investor sentiment for anomaly returns. Baele, Bekaert, and Inghel-
brecht (2010) investigate sentiment and the time-series relationships between government bond and stock
market returns, while Baker and Wurgler (2012) reveal that sentiment connects the cross-section of stock
returns with government bonds. Other papers explore how sentiment affects general financing patterns
including Chan, Durand, Khuu, and Smales (2017), Garćıa (2013), Mclean and Zhao (2014) among others.

3



2 Data Description

In this study, we forecast the Conference Board’s Consumer Confidence Index (CCI), ar-

guably the most well-known and followed measure of U. S. consumer confidence. The CCI

is considered to be a major predictor of stock market performance since it is hypothesized

to approximate the level confidence on future economy. Since 1967, the CCI has been cal-

culated monthly and is the average response to five specific questions contained within a

broader survey of consumer attitudes and expectations.7 Two of the questions focus on the

present labor market and the remaining three questions probe respondents about expected

changes in business conditions, job availability and respondents’ nominal income over the

next six months. Since social media data from Twitter is only recently available, we only

use data from January 2013 to March 2017.8

To forecast the CCI we consider standard predictors including macroeconomic vari-

ables, financial variables, and the big data variables. The macroeconomic variables de-

scribes the macro-level economic environment that economic theories often postulate would

affect one’s consumption behavior. Macroeconomic variables are usually reported on a

monthly basis, which is the same frequency as CCI. The financial variables measure the

overall performance of the financial markets from various perspectives. In finance studies,

CCI is considered as a major predictor that approximates the general public confidence

on future economy. Our forecasting models consider the inverse or this relationship and

financial variables in the current period are used to forecast future CCI values.

For the big data variables, we use Twitter data from 2013-01-01 to 2017-03-22 to

calculate consumer sentiment at both daily and the hourly level.9 We use the identical
7The University of Michigan’s Consumer Sentiment Index is another well-known study that measures

consumer confidence using five slightly different questions. The surveys also differ in the sample size (CCI is
much larger) and how the responses are collected (phone vs. mail responses for the CCI). In this study, we
follow the practice of each of the four financial forecasters who use this sentiment index as an explanatory
variable to forecast the CCI; rather than the converse. This is likely due to the timing of the survey release
since the CCI is released on the last Tuesday of each month at 10am EST, whereas preliminary results from
the University of Michigan arrives in mid-month.

8Expanding the data may lead to challenges from the emergence of bots. That said, our results are robust
to smaller time periods within this sampling frame.

9Our focus is using the hourly measure since the daily measure is weighted by the volume of tweets
average of the hourly measure. We explore the robustness of our results to the daily measure in the Appendix.
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Felbo et al. (2017) deep learning algorithm that Janys Analytics uses to construct the Wall

Street Journal - IHS U.S. Sentiment Index (USSI) introduced in Zumbrun (2017). In brief,

every tweet from a 10% random sample of all Twitter messages within the preceding hour

is scored and then these scores are averaged together. These are very large samples to

undertake sentiment analysis since in 2005, there was an average of 350,000 tweets sent

per minute globally. The number of tweets per hour generally varies between 120,000 to

200,000 tweets per hour in our 10% random sample.

Social media users are not demographically representative of the population and prior

research has found they are more likely to reside in urban areas (Mislove et al., 2011)

that are wealthier with younger populations (Malik et al., 2015). The Twitter users them-

selves tend to be younger and more educated than the general population (Greenwood,

Perrin, and Duggan, 2016). Yet, for consumer confidence, a predominately younger popu-

lation may be quite relevant for forecasts, given the standard hump shaped curve of how

consumer expenditures vary over the life-cycle.

Measuring sentiment in social media is a challenge in the field of natural language

processing. The algorithm we selected to analyze sentiment was trained on 124.6 million

tweets containing emojis. The algorithm does not score individual emotion words in a

Twitter message, but rather calculates a score based on the probability of each of 64 dif-

ferent emojis capturing the sentiment in the full Twitter message taking the structure of

the sentence into consideration. Thus, each emoji has a fixed score and the sentiment of a

message is a weighted average of the type of mood being conveyed. Tests of the validity

of the Felbo et al. (2017) algorithm with samples drawn from Amazon mechanical turk,

have found it to be more accurate than competing sentiment algorithms.10 The USSI is

a national measure and includes both investors and non-investors that has recently used

to forecast volatility (Lehrer, Xie, and Zhang, 2019).11 In total, we have 37,008 observa-

tions for the USSI variable at the hourly level as well as 1,543 observations for the USSI

10This likely arises since it considers the ordering of all the words in a Twitter message rather than using
a binary indicator such as positive or not, to those based on scoring words via emotional valence.

11The prior algorithm used by Janys Analytics to measure social media sentiment was used in applications
to forecast revenue for the film industry (Lehrer and Xie, 2017, 2018).
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at the daily level. Last, we created a monthly USSI variable, denoted as USSIa, by simple

averaging of the hourly measures.

Beyond social media data, we also account for macroeconomic and financial variables

in our forecast model. These explanatory variables are also collected at different frequen-

cies. Thus, for ease of exposition we use (M), (D), and (H) to indicate whether a specific

data series is reported on a monthly basis, daily basis, or hourly basis. The explanatory

variables that we control for in our forecasting models are listed and described in Table 1.

While the macroeconomic variables are measured at the same frequency (monthly) as

the CCI, both the financial and big data variables are measured at a higher frequency (daily

and hourly). In this paper, we focus on alternative conversions for the big data variables

and also convert all financial variables from daily to monthly using the conventional MI-

DAS method that is described in the next section. We consider three alternative measures

of the USSI: (i) USSIa is the monthly basis USSI converted from hourly basis USSI using

simple weighted averaging;12 (ii) we denote the monthly USSI converted from hourly basis

using conventional MIDAS as USSIh; and (iii) USSInew is the USSI converted from hourly

basis using the newly proposed H-MIDAS method that we introduce in Section 3.1.

Summary statistics for each data series included in the forecasting exercises are pre-

sented in Table 2. Note, that prior to including each series in this exercise, we perform the

augmented Dickey-Fuller test (ADF) test of the null hypothesis that a unit root is present

in each respective time series. The results suggest that the original series of nearly every

macroeconomic and financial variable is non-stationary; with the exception of the unem-

ployment rate. To construct a stationary data series for variable zt, we transform the data

by calculating the first difference ∆zt ≡ zt − zt−1. Applying the ADF-test to ∆zt we next

confirmed that each transformed data series is stationary. Notice in Table 2, that there is

a significant heterogeneity in both the CCI, MCSI and USSI measures. Among the alter-

native USSI measures we consider in the forecasting exercises, the USSI converted from

hourly basis using the newly proposed H-MIDAS method exhibits the lowest variability.

12The hourly USSI is accompanied with a hourly volume that measures the total number of tweets involved
in estimating the sentiment. The monthly basis USSIa is a simple weighted average of the hourly USSI using
volume as weights.
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Last, the variability in each of the financial variables appears small, but the range in the

data appears quite large relative to the other predictor variables.

Table 2: Summary Statistics

Variable Mean Median Minimum Maximum Std.Dev.
Panel A: Dependent Variable

∆CCI∗ 1.1549 1.5000 -8.8000 10.8000 5.0883

Panel B: Macroeconomic Variable
∆MCSI 0.4680 0.3500 -5.2000 8.1000 3.2773
∆LEI 0.3640 0.4000 -0.4000 1.3000 0.3973
UR† 5.9039 5.6000 4.6000 8.0000 1.0505
∆SR -0.1040 0.1000 -6.1000 0.6000 0.8905
∆CPI 0.2647 0.3610 -1.3770 1.3730 0.4860

Panel C: Financial Variable
∆SP500 2.1888 0.0200 -27.3900 72.9000 17.6210

∆VIX -0.0976 0.0616 -4.9285 2.8389 1.1653
∆USD 0.0475 0.0386 -0.8440 1.0179 0.3003
∆TS -0.0029 -0.0040 -0.0204 0.0191 0.0089

Panel D: Big Data Variable
USSIa 0.1067 0.3835 -6.5576 7.5495 2.3374
USSIh 0.1745 0.7438 -18.1427 12.9880 7.0689

USSInew 0.2560 0.3077 -10.8029 10.2103 5.3858
∗ The ∆ sign indicates the first-difference of the associated variable.
† Parameter UR is stationary, and hence does not require first-difference.

3 Data Sampling Techniques

Mixed-frequency problems are ubiquitous in many forecasting exercises for the banking

and finance industry. The CCI is not sampled at the same frequency as its potential pre-

dictors listed in Table 2. Numerous solutions to this challenge have been proposed be-

ginning with simply averaging the high-frequency data (USSIa) as in Section 2 to MIDAS

techniques initially proposed in Ghysels et al. (2004) and subsequently in Ghysels et al.

(2005, 2006 and 2007). Unlike simple averaging which equally weights all the data in the

high frequency series, MIDAS uses a pre-determined weighting function with a small num-

ber of hyperparameters relative to the sampling rate of the higher-frequency variable. The

hyperparameters are estimated (usually as the unique solution with a specific optimiza-

tion algorithm) and the estimates are then used to compute the MIDAS weighted averaged

predictors in the same frequency as the dependent variable.

8



Formally, if Yt is a low frequency variable that is sampled at periods denoted by a

time index t for t = 1, ..., n. Consider a higher frequency (indicated by a superscript h

throughout the paper) predictor Xh
t that are sampled m times within the period of t:

Xh
t ≡

[
Xh

t , Xh
t− 1

m
, ..., Xh

t−m−1
m

]>
. (1)

A specific element among the high frequency observations in Xh
t is denoted by Xh

t− i
m

for

i = 0, ..., m − 1.13 Denoting Li/m as the lag operator, then Xh
t− i

m
can be reexpressed as

Xh
t− i

m
= Li/mXh

t for i = 0, ..., m− 1.

Since Xh
t on Yt are measured at different frequencies, data snooping may arise if re-

searchers choose which Xh
t− i

m
to include as an explanatory variable. Converting the higher-

frequency data to match the sampling rate of the lower-frequency data solves the problem

of mixed sampling frequencies. The simplest way to to estimate a low frequency Xt that

matches the frequency of Yt is a simple average of the high frequency observations Xh
t :

X̄t =
1
m

m−1

∑
i=0

Li/mXh
t .

When Yt and X̄t are measured in the same time domain, a regression approach is simply

Yt = α + γX̄t + εt = α +
γ

m

m−1

∑
i=0

Li/mXh
t + εt, (2)

where α is the intercept, γ is the slope coefficient on the time-averaged X̄t. This approach

assumes that each element in Xh
t has an identical effect on explaining Yt, since they share

the same coefficient γ.

These homogeneity assumptions may be quite strong in practice. For example, elements

of the high frequency variable may have a heterogeneous effect. One could assume that

each of the slope coefficients for each element in Xh
t is unique. Extending Model (2) to

13In this case, the high frequency observation Xh
t at exact time period of t is included in estimating Yt. In

practice, this is possible when the low frequency Yt is observed after the period t, for example, GDP, GNP,
etc. For simplicity, we adopt this framework in the remainder of this paper.
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allow for heterogeneous effects of the high frequency observations generates

Yt = α +
m−1

∑
i=0

γiLi/mXh
t + εt, (3)

where γi represents a set of slope coefficients for all high frequency observations Xh
t− i

m
.

Estimating γi can be problematic when m is a relatively large number.14

Thus, while the simple averaging model (2) is parsimonious, it discards information re-

lated to the timing of innovations to higher-frequency data. In contrast, the heterogeneous

weighting model (3) preserves the timing information, although it may require the analyst

to estimate a potentially large number of parameters. To reduce the dimensionality of the

number of parameters while preserving some timing information, Ghysels et al. (2004)

proposed the following MIDAS model:

Yt = α + γ
m−1

∑
i=0

Φ(i; θ)Li/mXh
t + εt, (4)

where the function Φ(i; θ) is a polynomial that determines the weights for temporal aggre-

gation based on the hyperparameter θ. The weighting function, Φ(i; θ), is not restricted

and can take a variety of functional forms. Researchers should select a Φ(i; θ) that is

both flexible and parsimonious. For example, Ghysels, Santa-Clara, and Valkanov (2005)

suggest using an exponential Almon specification:

Φ(i; θ1, θ2) =
exp(θ1i + θ2i2)

∑m−1
j=0 exp(θ1 j + θ2 j2)

.

With this weighting function, simple time averaging is obtained when θ1 = θ2 = 0.15

A nonlinear least squares (NLS) estimator is used to obtain the unknown coefficients θ

14Problems with high-dimensional explanatory variables are a major feature of research involving big data.
Estimators such as the LASSO zero out many of the γi to satisfy a strong sparsity condition. We follow an
approach developed in the econometrics literature to develop a parsimonious specification.

15Another popular choice among forecasters for the weighting function is the beta formulation:

Φ(i; θ1, θ2) =
f ( i+1

m , θ1, θ2)

∑m−1
j=0 f ( j+1

m , , θ1, θ2)
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from MIDAS regression. We can reexpress the right-hand-side of equation (4) and define

X̂t ≡
m−1

∑
i=0

Φ(i; θ̂)Li/mXh
t . (5)

Intuitively, this converts the higher frequency variable Xh
t− i

m
to the same frequency as Yt

with dynamic weights Φ(i; θ̂); such that X̂t has better explanatory power on Yt.

Using the conventional MIDAS method presented in equation (4), the hourly USSI is

aggregated to a monthly measure using the exponential Almon polynomial as the weight

function. Figure 1(a) illustrates the estimated weights for each high frequency group with

m = 650 observations. For brevity, we only present the first 100 Almon polynomial lags,

since weights after the first 20 periods are very close to 0.16 In the context of this study,

the evidence in the graph implies that only hourly measures of the USSI collected on the

last day of each month are used to construct the monthly USSI.

The extreme weights in Figure 1(a) arise from the choice of an exponential Almon

polynomial as the weight function.17 The exponential Almon polynomial gives near zero

weight to observations collected earlier in the data series based on the belief that more re-

cent observations should have larger impacts on the dependent variable. The exponential

Almon performs well in settings where analysts convert monthly data to quarterly, or an-

nual data, which involves either 3 observations averaged to 1 or 12 observations averaged

to 1.18 In our application, however, we need to convert both daily data to monthly data as

well as hourly data to monthly data, that is approximately 650 observations averaged to 1

in the latter example.

where f (x, θ1, θ2) =
xθ1−1(1−x)θ2−1Γ(θ1+θ2)

Γ(θ1)Γ(θ2)
with θ1 and θ2 being hyperparameters governing the shape of the

weighting function, and Γ(θ) =
∫ ∞

0 e−xxθ−1dx is the standard gamma function. Simple time averaging is
nested within and obtained when θ1 = θ2 = 1. In our forecasting exercise, we considered both specifications
of the weighting function and the results using the Almon specification strictly dominate the beta specifica-
tion. As such, we present results using the Almon specification in the main text. The full set of results that
utilized the beta specification are available from the corresponding author upon request.

16The exponential Almon polynomial only considers approximately 20 most recent observations in both
our application and earlier work including Ghysels, Santa-Clara, and Valkanov (2006). The 20 most recent
observations roughly corresponds to using data from a single day in a month.

17Note, the beta formulation leads to even more extreme weights.
18See Ghysels et al. (2004,2005) and Ghysels, Sinko, and Valkanov (2007) for more examples.
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Recall, the CCI is constructed from responses to survey questions that are received

throughout the month. This transformation places greater weight on most recent events

but if survey responses vary across the month and the completions are related to economic

conditions, this strategy ignores the potential timing. As such, we next consider a simple

modification to the conventional MIDAS procedure to allow for greater heterogeneity.

3.1 Heterogenous Mixed Data Sampling (H-MIDAS)

We modify the (conventional) MIDAS method described in Section 3 to a method that uses

a step function to allow for heterogeneous effects of different high frequency observations

on the low frequency dependent variable. We coin this new method as heterogeneous

MIDAS, or H-MIDAS for short.19

To demonstrate this H-MIDAS procedure, recall that Xh
t is defined as

Xh
t =

[
Xh

t , Xh
t− 1

m
, ..., Xh

t−m−1
m

]>
.

A low frequency X̄(l)
t can be constructed following

X̄(l)
t ≡

1
l

l−1

∑
i=0

Li/mXh
t =

1
l

l−1

∑
i=0

Xh
t− i

m
, (6)

where l is a pre-determined number and l ≤ m. Equation (6) implies that X̄(l)
t is computed

by a simple average of the first l observations in Xh
t and ignore the remaining observations.

We consider different values of l and group all X̄(l)
t into X̃ t such that

X̃ t =

[
X̄(l1)

t , X̄(l2)
t , . . . , X̄(lp)

t

]
,

where we set l1 < l2 < · · · < lp. Consider a weight vector w =
[
w1, w2, . . . , wp

]>
with

19Our method is inspired by the heterogeneous autoregression (HAR) of Corsi (2009), who proposed an
additive cascade model of volatility components defined over different time periods that leads to a simple AR-
type model in the realized volatility with the feature of considering different volatility components realized
over different time horizons.
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∑
p
j=1 wj = 1, we can construct regressor Xnew

t as Xnew
t = X̃ tw. The regression based on

our H-MIDAS estimator can be expressed in the same fashion as the conventional MIDAS

estimator of Ghysels et al. (2004) such that

Yt = βXnew
t + εt = β

p

∑
s=1

p

∑
j=s

wj

lj

ls−1

∑
i=ls−1

Li/mXh
t + εt = β

p

∑
s=1

ls−1

∑
i=ls−1

w∗s Li/mXh
t + εt. (7)

This specification nests the weights considered in conventional MIDAS when l0 = 0 and

w∗s = ∑
p
j=s

wj
lj

. For ease of exposition, we ignore the intercept α in the H-MIDAS regression

(7). In empirical practice, one can demean Yt and X̃ t when estimating (7).

The weights w play a crucial role in this procedure. We first estimate β̂w following

β̂w = arg min
w∈W

∥∥Yt − X̃ t · βw
∥∥2

by any appropriate econometric method necessary, whereW is some predetermined weights

set. Once β̂w is obtained, we estimate the weight vector ŵ by rescaling

ŵ =
β̂w

Mean(β̂w)
,

since the coefficient β is a scalar. In this paper, we use OLS to estimate β̂w and then

calculate the converted X̂new
t = X̃ t · ŵ.

Figure 1: Estimated Weights for USSI Using Various MIDAS Methods
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(a) MIDAS on Hourly USSI
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(b) H-MIDAS on Hourly USSI
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(c) H-MIDAS on Daily USSI
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Figure 1(b) illustrates the estimated weights for H-MIDAS when we convert the hourly

USSI to monthly using [1, 12, 24, 120, 240, 650] as the lag index to mimic the 1-hour, 1/2-

day, 1-day, 1-week, 2-week, and 1-month effects. The estimated weights for H-MIDAS are

not as smooth as conventional MIDAS demonstrated in Figure 1(a) and place significantly

less weight on the USSI measured in the last few hours. We denote the USSI converted

by H-MIDAS as USSInew. Overall, contrasting the first two panels of figure 1 illustrates the

benefits that may accrue from relaxing the functional form assumptions embedded in the

choice of weighting functions using the conventional MIDAS.

Figure 1(c) displays the estimated weights for H-MIDAS that convert the daily USSI

to monthly using [1, 7, 14, 30] as the lag index to mimic the 1-day, 1-week, 2-week, and

1-month effects. Notice that the step function has a very heterogeneous pattern placing

larger weight on the most recent and least recent days in the month. Thus, the last panels

of Figure 1 illustrate that the H-MIDAS procedure does not restrict the pattern across

dates to take a specific shape. The time-varying pattern that is observed in this panel, may

arise since we control for the MCSI that may do a tremendous job of capturing similar

information as measures of the USSI collected between 8-22 days earlier.

To further understand the properties of the H-MIDAS estimator, we derive the asymp-

totic properties of the H-MIDAS estimator in the Appendix A. These properties permit us

to state the following (dial-down version) lemma:

Lemma 1 Let the variable Xh
t− i

m
follow an AR(1) process. Then, compared to the H-MIDAS

method, the simple averaging estimator introduces asymptotic bias to the coefficient β.

See Appendix A for an extended statement and a detailed proof. This lemma extends

Proposition 4.3 of Andreou, Ghysels, and Kourtellos (2010) that derived conditions under

which the simple averaging estimator can introduce asymptotic bias to the coefficient rel-

ative to the conventional MIDAS techniques. The above finding can now be applied to a

broader set of MIDAS techniques including the H-MIDAS method.
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4 Forecasting Techniques

Researchers interested in forecasting with social media data are faced with a decision

regarding on how to construct aggregate measures from high frequency social media data

and also which estimator to apply to the forecasting model. Since time series forecasting

can be framed as a supervised learning problem, there is growing evidence (see e.g. Lehrer

and Xie, 2018) that standard linear and nonlinear machine learning algorithms display

improved performance.20 To help provide an evidence base to assist future researchers and

finance practitioners, we examine the relative prediction efficiency of different estimators

with different ways of accounting for social media data using the following experiment.

We contrast a suite of popular approaches from the econometrics literature with those

from machine learning. Specifically, the econometric approaches include

(i) OLS using all of the available regressors in a general unrestricted model (GUM);

(ii) Model selection using the Akaike information criterion (AIC) of Akaike (1973);

(iii) Model averaging allowing for model uncertainty where the weights are chosen using

the prediction model averaging of Xie (2015) (PMA).

Among machine learning algorithms, we first consider four methods that use algo-

rithms that partition the characteristic space into a series of hyper-cubes. A local constant

model is estimated in each partition to approximate the underlying data generation pro-

cess. The methods considered include

(iv) Regression trees proposed by Breiman, Friedman, and Stone (1984) (RT);

(v) Bootstrap aggregation (BAG) tree technique developed in Breiman (1996);

(vi) Random forest (RF) of Breiman (2001);
20For example, Bajari, Nekipelov, Ryan, and Yang (2015) analyzed the advantages of using machine learn-

ing methods for demand estimation, Mullainathan and Spiess (2017) provided a up-to-date overview on
machine learning methods in economics, while Athey and Imbens (2017) demonstrated how machine learn-
ing methods can improve the performance of the standard econometric methods.
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(vii) A simple least squares boosting (LSB) tree of RT ensembles (BOOST).

We also consider penalized regression methods from the machine learning literature

(viii) Support vector regression (SVR) machines proposed in by Drucker et al. (1996)

using linear and nonlinear kernels

With both the bootstrap aggregation tree and random forest algorithms, we estimate

100 trees in the ensemble and additionally account for an important feature of our data

consisting of dependent observations, We use two specific bootstrap methods for time

series data in our implementation. Specifically, we consider Kulperger and Prakasa Rao

(1989) Markov bootstrap method as well as Künsch (1989) moving block bootstrap (MBB)

method. These methods respectively rely on either assuming a specific structural form for

a stationary and weakly dependent time series or a weaker restriction that only preserves

the dependence structure of the random variable at short lag distances.21 We consider

SVRs with different penalty functions to control which observations are given weight in

the objective function of the estimator. We consider both linear (denoted as SVR1) and

two different nonlinear kernels (denoted as SVR2 for a Gaussian kernel and SVR3 for a

local polynomial kernel). Further details on the implementation and theory underlying

each of these estimators is provided in Appendix B.

5 Empirical Results

A rolling window exercise that fixes the window length at 36 (3 years) is conducted. For

each forecasting strategy, the mean squared forecast error (MSFE) and mean absolute fore-

cast error (MAFE) from a one-step-ahead forecast is computed. To assess how to extract

the most value from social media content in forecasting economic outcomes, we consider

five alternative methods of including the USSI as a predictor variable:

21See Kreiss and Lahiri (2012) for a detailed literature review as well as Appendix B for more details on
our implementation.
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(i) M0: data without any USSI variables;

(ii) Ma: data with USSIa (simple average);

(iii) Mm: data with USSIm (conventional MIDAS, hourly);

(iv) Mnew: data with USSInew (H-MIDAS, hourly).

(v) Mall: data with all three versions of USSI variables.

Table 3 reports the median MSFE and MAFE from the relative one month ahead pre-

diction efficiency experiment for each of the 10 forecasting methods (columns) described

in the preceding section with the above alternative methods of including the USSI across

the rows of Table 3. To ease interpretation, we place the lowest MSFE and MAFE in bold,

for each row of Table 3. The linear support vector machines for regression demonstrates

improved performance relative to the other estimators considered, unless we include three

versions of the USSI in the model.

Table 3: One-step-ahead Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
M0 18.8061 17.7036 17.9470 27.7313 18.6351 18.8577 67.6181 13.0906 19.5763 31.0816
Ma 19.4375 26.4169 20.8762 27.7313 17.5063 17.5503 66.9525 16.2758 19.6363 33.2165
Mm 17.0214 19.6263 16.9666 12.4811 13.2995 14.3669 35.9071 12.1732 19.5361 28.7186
Mnew 14.1906 15.1128 13.2115 18.7820 12.9198 13.8692 18.5529 10.3271� 19.6891 24.8384
Mall 17.6537 14.8215 13.1496 13.2403 11.3241 11.8710 18.5307 13.1679 19.7090 32.5857

Panel B: Mean Absolute Forecast Error (MAFE)
M0 3.5614 3.4078 3.3684 3.8111 3.3645 3.3721 6.4182 3.0174 3.7057 4.3819
Ma 3.5083 4.0982 3.7362 3.8111 3.3317 3.2610 6.6775 3.2589 3.7403 4.7417
Mm 3.1777 3.4367 3.0940 2.9261 2.7873 2.9146 4.4979 2.6881 3.7023 4.5727
Mnew 2.7981 2.7415 2.6811 3.0674 2.6245 2.8316 3.4075 2.5035� 3.7456 3.7854
Mall 3.0771 2.6835 2.6163 3.0374 2.5985 2.6084 3.2112 2.7050 3.7323 4.4751

Note: numbers with � indicate the best performing methods in each panel.

There are several findings in Table 3 worth stressing. First, when comparing the results

across rows of the Table, irrespective of the estimator, we see that the prediction efficiency

increases by more than 25% using MSFE as criterion when we include social media data

measured by USSInew. This result provides the first piece of evidence demonstrating the

importance of using social media data in this forecasting exercise.
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Second, the results in Table 3 demonstrate the general improvements in forecasting

from a machine learning algorithm relative to an econometric approach presented in any

of the first three columns of the Table. Gains from machine learning algorithms arise since

variables are added to the forecasting model in a more flexible manner than econometric

strategies, since in a tree structure every cut-point in each independent variable is con-

sidered allowing for highly nonlinear models with potentially complex interactions. In

our application, support vector machines for regressions demonstrate the strongest perfor-

mance in terms of either MSFE or MAFE for most of the cases, but bagging and random

forests also have lower MSFE and MAFE so long as a measure of the USSI is included.

Regression trees and boosting do not perform as well (nor the non-linear SVR2 and SVR3)

as the SVR1 estimator, which may reflect the small sample size in this forecasting exercise.

Third, the results also suggest the importance of considering model uncertainty when

comparing GUM (no model uncertainty) to PMA. The prediction efficiency is improved by

34% when usingMall. Interestingly, the model selection (AIC) method in our exercise do

not yield better forecasts than GUM, withMa,Mm, andMnew.

To examine if there are more general benefits from using H-MIDAS in place of con-

ventional MIDAS, we next convert the daily financial variables inMh
s using H-MIDAS. We

replicate the analysis presented in Table 3 where now each of the four financial variables

used as predictors is transformed via H-MIDAS. To undertake this transformation, we set

the lag index in H-MIDAS as 1 to 22 in a bid to mimic the 1-day to 1-month averages.22

In other words, the results presented in Table 4 repeats the same forecasting experiment

where now every high frequency data is converted by the H-MIDAS procedure.

The rows of in Table 4 continue to explore alternative methods to include the USSI

in the forecasting exercise, with input groups, denoted by Mh
s , which is identical to Ms

for s = 0, a, m, new, all with the exception that we in contrast to the conventional MIDAS

method used inMnew. Exploring each cell of the forecasting results presented in Table 4,

we observe improved results indicating improved forecasting performance than those in

Table 3. This implies the superiority of our H-MIDAS method over the conventional MIDAS

22The choice of optimal lag index is beyond the scope of this paper and leave for future research.
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Table 4: One-step-ahead Forecasting Results where All Financial and Macroeconomic
Variables Are Transformed by H-MIDAS

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
Mh

0 11.1230 10.2568 11.6820 14.6906 13.1275 12.5885 14.4684 9.9089 19.4999 15.6654
Mh

a 10.2857 10.0643 11.1280 14.6906 12.6923 12.4064 13.5092 9.8430 19.8121 15.3893
Mh

m 11.6393 10.2568 11.6820 16.0860 12.7677 12.3043 16.7293 10.7093 19.4000 23.2848
Mh

new 8.7328 9.3175 8.7556 13.3832 11.8608 11.5446 12.5212 8.2013� 19.6947 9.0957
Mh

all 10.6760 9.3175 8.7556 13.3832 11.6948 11.4150 8.3833 8.2310 19.7648 17.6720

Panel B: Mean Absolute Forecast Error (MAFE)
Mh

0 2.7011 2.6499 2.8140 3.3228 2.9433 2.8488 3.1374 2.5852 3.6667 3.4733
Mh

a 2.5891 2.5993 2.6907 3.3228 2.8446 2.8743 3.2356 2.4999 3.7491 3.1214
Mh

m 2.7688 2.6499 2.8140 3.4833 2.9018 2.8205 3.5549 2.6738 3.6548 4.0463
Mh

new 2.4821 2.6057 2.4140 3.0051 2.7590 2.7249 2.7532 2.3717 3.7330 2.5448
Mh

all 2.6533 2.6057 2.4140 3.0051 2.7336 2.6774 2.4616 2.3535� 3.7337 3.4592

Note: numbers with � indicate the best performing methods in each panel.

even in the case of converting daily frequency to monthly frequency.

The main result from Table 4 is a clear demonstration of the potentially large benefits

from adopting MIDAS methods that allow for more flexible weights and not restrict them

to be constant across predictors or to follow a specific functional form. While the H-MIDAS

approach was initially developed for social media data, in part since online opinion can

shift rapidly in unpredictable directions,23 our empirical investigation finds that it be ben-

eficial to use with other high frequency variables whose measurements vary significantly

within the low frequency period. Moreover, the results in Table 4 reinforce our earlier

finding of the importance of using social media data in this forecasting exercise, since

the prediction efficiency increases by more than 20% judged by the MSFE. Further, the

23As an extreme example of the challenge in incorporating social media data, tweets from U.S. President
Donald Trump on economic policies often lead to both large swings in aggregate Twitter sentiment measures
and can have large impacts upon intraday volatilities facing futures, equities, and FOREX markets. A related
but more concrete and specific example of how aggregate Twitter sentiment moves with financial indicators
such as equity prices consider that following the removal of Ivanka Trump’s fashion line from their stores,
President Trump issued a statement via Twitter:

My daughter Ivanka has been treated so unfairly by @Nordstom. She is a great person – always
pushing me to do the right thing! Terrible!

The general public response to this Tweet was to disagree with President Trump’s stance on Nordstrom so
aggregate Twitter sentiment measures rose and the immediate negative effects from the Tweet on Nordstrom
stock of a decline of 1% in the minute following the tweet were fleeting since the stock closed the session
posting a gain of 4.1%. See http://www.marketwatch.com/story/nordstrom-recovers-from-trumps-terrible-
tweet-in-just-4-minutes-2017-02-08 for more details on this episode.
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performance of SVR1 continues to dominate other estimators in Table 4.

To provide a visual understanding of whyMnew yields the lowest MSFE with SVR1, we

present the forecasting results for Ma, Mm, Mnew, and Mall we account for the USSI

in the panels of Figure 2. The solid line represents the actual data and the dashed line

represents forecasting results from the SVR1 method. Monthly date ticks are labeled in

the horizontal axis. Notice that both Ma and Mm struggle with forecasts in August and

September 2016. Both Mnew and Mall generally tracks the temporal pattern and Mnew

does experience smaller deviations from the actual line in most months. The results with

Mall perform quite well until the US election when they overshoot the negative sentiment

associated with Donald Trump’s victory relative to sentiment associated with consumer

confidence. This result does stress that understanding what twitter sentiment is capturing

is important to using it as an explanatory factor in forecasting models.

Figure 2: Forecasting Performance of SVR1 Using Various Input Data
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The panels in Figure 3 conduct the same graphical evidence of the forecasting per-

formance of the 10 different estimators considered for theMnew. The three econometric

approaches (GUM, AIC and PMA) as well as boosting tend to forecast too low values for the
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CCI in most periods. Both random forests and SVR2 appear to do a poor job at capturing

the monthly fluctuations in the CCI. The similar performance of random forests relative to

regression tree is striking since the latter should capture more heterogeneity by averaging

across trees. Among potential empirical strategies, support vector machines for regres-

sion with linearity appears to perform well overall, as well as exhibit the closest forecasts

in most every month. SVR1 ranks highest in forecast accuracy among the 10 estimators

28.57% of the time; and ranks second and third highest 35.71% and 14.29% of the time.

In summary, our results suggest that not only does social media data matter for forecasts,

but so does how it is aggregated.

In Appendix C, we repeat the above exercises in Section 5 using a daily USSI in place

of the hourly USSI data. The daily USSI is a simple weighted average of the hourly USSI,

where the weights reflect the hourly volume of Tweets divided by the total volume per

day. Similarly to investigate robustness, Appendix D presents results of forecasting CCI

two months ahead and unsurprisingly forecast accuracy declines with dynamic forecasts

since they involve more than one step ahead. Yet, the analysis in both of these exercises

demonstrate the robustness of our results that find (i) incorporating USSI in forecasting

the CCI is empirically important, and (ii) the superior performance with the H-MIDAS

estimator.

5.1 Additional Evidence of Benefits from Including Social Media Data

To further illustrate the benefits of including an appropriately transformed USSI measure

as an explanatory variable when forecasting ∆CCIt, consider OLS estimates of the GUM

specification

∆CCIt = β0 + β1∆MCSIt−1 + β2∆LEIt−1 + β3URt−1 + β4∆SRt−1 + β5∆CPIt−1

+β6∆SP500t−1 + β7∆VIXt−1 + β8∆USDt−1 + β9∆TSt−1 + β10USSIs,t−1 + εt. (8)

Table 5 compares OLS estimates across nested specifications that either impose restrictions

on some of the coefficients (i.e. all financial variables equal 0, etc.) or utilize different
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aggregations of the USSI. Specifically, the subscript s = a, m, or new that respectively rep-

resent the USSI converted by simple averaging, conventional MIDAS, and our proposed

H-MIDAS method. Panels A to C of Table 5 present the estimated coefficient and associ-

ated standard error (in parenthesis) for each variable with variable names list on the first

column. Panel D reports the centered R2 and adjusted R2 for each model.

The first two columns of Table 5 exclude the USSI. None of the macroeconomic and

financial variables are statistically significant, with the sole exception of USD. Yet, an F-test

of Model (1) is unable to reject the joint insignificance of all macroeconomic variables at

the 10% level. This likely arises since for forecasting to be valid we must use a one-month

lag of the macroeconomic variables. In contrast, the set of financial variables (transformed

via conventional MIDAS) in Model (2) are jointly significant with a p-value 0.0008.24

Models (3) to (5) consider the sole inclusion of a single alternative USSI measure. In

each specification, the respective USSI enters in a statistically significant manner but there

are large differences across the columns in the magnitude of the effect. By comparing

the associated R2
c and R̄2 values, we notice that the regression model containing the USSI

created by H-MIDAS explains the most variation in the data.25 GUM estimates with alter-

native USSI measures are presented in columns (6) to (8) of Table 5. Surprisingly, given

the large marginal effect in Model (3), USSIa variable is statistically insignificant when one

also conditions on macroeconomic and financial variables. This result is suggestive of high

degrees of collinearity between the simple averaging USSIa and subsets of the macroe-

conomic and financial variables. The estimates in Models (7) and (8) demonstrate that

there is unique variation in USSIm and USSInew and each of them enter in a statistically

significant manner. Further, the coefficients in Models (7) and (8) do not differ markedly

from those in Models (4) to (5), which increases our confidence that this is explaining

24The conference board releases CCI on the last Tuesday of each month at 10am. Since the macroeco-
nomic variables are on the same frequency of CCI, we use one-month lags to avoid simultaneity and have
a valid forecasting model. This information is reported approximately one month before the CCI is release.
The financial variables, on the other hand, contain information up to one day before the release and such
information can be preserved by the conventional MIDAS method to a higher degree than H-MIDAS which
would give larger weight to more distant observations in the series. The difference in timing likely explains
why financial variables have better forecasting performance than the macroeconomic variables.

25It should also be noted that Model (5) yields the highest R̄2 values among all 12 models.
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variation in the CCI that was not captured by traditional variables. Finally, the lack of

gains when moving from allowing model uncertainty (comparing GUM to PMA columns)

in Table 2 may arise from the absence of multiple significant regressors when the USSInew

is not included as a regressor.

Last, Models (9) to (12) explore if there is additional value from including multiple

USSI measures. Contrasting the estimates across these four columns suggests that there is

unique explanatory power in USSInew relative to the other metrics. USSInew always enters

in a statistically significant manner.26

Overall, the results in Table 5 reinforce the importance of incorporating big data vari-

ables on forecasting CCI. The big data series contains information up to one hour prior

to the release of the CCI. The series generate significant explanatory power on CCI as the

values of R2
c increase sharply when big data variables are included. Most importantly, the

results in Models (7) and (8) demonstrate the necessity of converting higher frequency

data to low frequency with sophisticated econometric techniques like MIDAS. When com-

paring the performance of models that either include the USSIm, USSInew, or the simple

USSIa variables, we find that valuable information contained in specific increment of the

higher frequency interval can be diluted by simple averaging.

Further, the improved forecast accuracy observed in Table 4 relative to Table 3 across

all metrics and estimators points out that allowing for more flexible weights can capture

the unsystematic manner by which time-varying conditions underlying these financial and

social media measures truly impact consumer confidence. This provides additional intu-

ition for the potential wider applicability of the H-MIDAS estimator since it is not restricted

by a functional form assumption. In summary, extracting useful information lurking in the

higher frequency data is challenging, but by imposing weaker assumptions when aggre-

gating high frequency data can lead to large rewards in forecast accuracy.

26The analysis also indicates a high degree of correlation between USSIm and USSId.
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6 Conclusion

Petabytes of new text data are created every second on social media and it remains an

open question if measures extracted from anonymized social media data can help improve

our ability to predict future values of the economic indicators ahead of the release of

statistical data. However, an additional challenge may arise since social media data differs

sharply from other macroeconomic and financial time series in manners beyond simply

being text. To incorporate the high frequency part of social media data we propose a new

MIDAS strategy that allows for greater heterogeneity in the weights across time, thereby

allowing for a more gradual depreciation relative to the common implementation of the

mixed data sampling approach. Using both forecasting models from the econometrics and

machine learning literature, we provide evidence that incorporating sentiment measures

from Twitter greatly improves forecast accuracy of the CCI.

Further, we find major improvements from using our proposed H-MIDAS strategy over

other approaches to collapse high frequency data to a single measure. While developed for

social media data, our forecasting exercise also shows that there are substantial benefits

to using the H-MIDAS on financial variables. An additional advantage of the H-MIDAS

estimator is that it allows for a unrestricted step-function to choose weights on elements

within a series of the high frequency predictor variables, thereby not imposing arbitrary

functional form assumptions that are implicitly embedded with conventional MIDAS strate-

gies. We believe this method can offer substantial benefits in other forecasting exercises

within the banking and finance industry.

For practitioners, the evidence in this study suggests that exploiting social media data

may provide individuals and firms across numerous industries including banking and fi-

nance an advantage to enhance their forecasting capabilities. That said, future research

needs to consider developing new tools that may help forecasters gain further advantage as

well as investigate forecasting financial measures that are measured at a higher frequency

level. On the former, one could consider as an alternative to using a statistical approach to

weight Twitter sentiment across periods as in H-MIDAS, it may be interesting to examine

26



how weights derived from either Twitter volume or from the historical timing of survey

responses perform in forecasts of consumer confidence. That is, if 8% of surveys used to

construct the CCI are historically mailed by survey respondents 11 days prior to the release

of CCI, we could assign a weight of 8% to Twitter sentiment measured 11 days prior.

Further, future researchers could consider treat social sentiment as multidimensional

rather than a single sentiment score. For example, one could measure mood from subset

of tweets based on subgroups characterized by age or occupation or even whether the

Twitter message has a positive or negative orientation. By unpacking the USSI in to its

components, one could understand what type of emotions conveyed in individual tweets

is associated with consumer confidence. In summary, this paper illustrates how in the big

data era, many new innovations in the forecasters’ toolbox will need to emerge to extract

the full potential of these data new sources to improve forecasts of variable of interest to

the banking and finance industry.
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A Asymptotic Properties of the H-MIDAS Estimator

In this section, we analyze the asymptotic properties of the H-MIDAS estimator. We de-
rive its asymptotic variance for inference purpose and demonstrate that not using our
H-MIDAS estimator can introduce bias to the estimation of the coefficients under certain
circumstances.

Let τ =
[

β, θ>
]>

, θ =
[
θ1, θ2, . . . θp−1

]>, then we have wj (θ) = θj, if 1 ≤ j ≤ p −

1, and wp (θ) = 1 − ∑
p−1
k=1 θk, note that the first order derivative of the weights can be

expressed as
∂w (θ)

∂θ>
=

[
Ip−1
−ι>p−1

]
,

where ι is a column vector with all elements to be 1. If we define g(X̃ t, τ) = βXnew
t (w) =

β ∑
p
j=1 wj(θ)X̄(lj)

t = ∑
p
j=1 βwj (θ)

1
lj

∑
lj−1
i=0 Xt− i

m
,, we have the derivatives of g(X̃ t, τ) as

∂g
(
X̃ t, τ

)
∂τ

=

 ∂g(X̃ t,τ)
∂β

∂g(X̃ t,τ)
∂θ

 =

[
Xnew

t (w)
∂w(θ)

∂θ>
βX̃ t

]
=

[
w>X̃ t

β
∂w(θ)

∂θ>
X̃ t

]
,

and the regression problem can be viewed as

Yt = g
(
X̃ t, τ

)
+ εt

which can be estimated by the nonlinear least square method. According to Andreou, Ghy-
sels, and Kourtellos (2010), the estimator of τ, which is denoted by τ̂, has asymptotically
distribution

√
T (τ̂ − τ)

d→ N

0, σ2

[
E

(
∂g(X̃ t, τ)

∂τ

∂g(X̃ t, τ)

∂τ

>)]−1
 .

We derive the asymptotic variance of the estimator of β in the following lemma

Lemma 0 Suppose Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρX(h)

t− i−1
m

+ et− i
m

,

where |ρ| ∈ (0, 1) is the AR coefficient and the error term et− i
m

iid∼
(
0, σ2

e
)
. The asymptotic

variance of the estimated coefficient β̂ is

AVar
(

β̂
)

= σ2
e

[
w>E

[
X̃ tX̃

>
t

]
w−w>E

[
X̃ tX̃

>
t

] ∂w (θ)

∂θ>

1



×
(

∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

] ∂w (θ)

∂θ>

)−1
∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

]
w

−1

,

where the ith element of E
[

X̃ tX̃
>
t

]
is

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

li
(
1− ρ2)+ ρ

(
1− ρli

)
As,j

lils (1− ρ)2 (1− ρ2)

where
As,j ≡

(
1− ρls − ρls−lj

) (
ρls−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρls − 2.

Proof of Lemma 0 Since Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m

,

with an error term et− i
m

iid∼
(
0, σ2

e
)
, following the derivatives of g(X̃ t, τ), the general for-

mula for estimating the asymptotic variance of the estimator of β is

AVar
(

β̂
)

= σ2
e

[
w>E

[
X̃ tX̃

>
t

]
w−w>E

[
X̃ tX̃

>
t

] ∂w (θ)

∂θ>

×
(

∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

] ∂w (θ)

∂θ>

)−1
∂w (θ)

∂θ>

>
E
[

X̃ tX̃
>
t

]
w

−1

.

However, we still need to derive the ith element of E
[
X̃ tX̃

>
t
]

from the above equation.

The regressors Xh
t− i

m
can be expressed as

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m
=

m−i−2

∑
j=0

ρjet− i+j
m
+ ρm−i−1Xh

t−m−1
m

.

We can write X̄(li)
t as follows

X̄(li)
t =

1
li

li−1

∑
i=0

Xh
t− i

m
=

1
li

li−1

∑
i=0

(
m−i−2

∑
j=0

ρjet− i+j
m
+ ρm−i−1Xh

t−m−1
m

)

=
1
li

li−1

∑
i=0

m−i−2

∑
j=0

ρjet− i+j
m
+

(
ρm−li 1

li

li−1

∑
i=0

ρli−i−1

)
Xh

t−m−1
m

2



=
1
li

li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m
+

1
li
· 1− ρli

1− ρ

m−2

∑
k=li

ρk−li+1et− k
m
+ ρm−li 1

li
· 1− ρli

1− ρ
X(h)

t−m−1
m

≡ A(li) + B(li) + C(li),

where we define A(li), B(li), and C(li) accordingly to simplify the complicated polynomial.

In order to compute the covariance Cov
(

X̄(li)
t , X̄(ls)

t

)
, where ls > li, we first decompose

X̄(li)
t and X̄(ls)

t . For the X̄(li)
t term, we decompose the middle component, B(li), and obtain

X̄(li)
t = A(li) +

(
1
li
· 1− ρli

1− ρ

ls−1

∑
k=li

ρk−li+1et− k
m
+

1
li
· 1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

)
+ C(li).

For the X̄(ls)
t term, we decompose the A(ls) component as

X̄(ls)
t =

(
1
ls

li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m
+

1
ls

ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)
+ B(ls) + C(ls).

Then, it is straightforward to show that

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

1
lils
· Var

(
li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m

)
≡D

+
1

lils
· 1− ρli

1− ρ
Cov

(
ls−1

∑
k=li

ρk−li+1et− k
m

,
ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)
≡E

+
1

lils
· Cov

(
1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

,
1− ρls

1− ρ

m−2

∑
k=ls

ρk−ls+1et− k
m

)
≡F

+
1

lils
·

ρ2m−li−ls
(

1− ρli
) (

1− ρls
)

(1− ρ)2 Var
(

Xh
t−m−1

m

)
≡G

=
1

lils
·
(

D + E + F + G
)
,

where D, E, F, and G represent the associated terms.

Since the D term can be explicitly written as

Var

(
li−1

∑
i=0

1− ρk+1

1− ρ
et− k

m

)
=

σ2
e

(1− ρ)2

[
li−1

∑
i=0

(
1− 2ρk+1 + ρ2(k+1)

)]

=
σ2

e

(1− ρ)2

[
li − 2

ρ
(
1− ρli

)
1− ρ

+
ρ2 (1− ρ2li

)
1− ρ2

]

=
li
(
1− ρ2)− 2ρ

(
1− ρli

)
(1 + ρ) + ρ2 (1− ρ2li

)
(1− ρ)2 (1− ρ2)

σ2
e

3



=
li
(
1− ρ2)− 2ρ− ρ2 + 2ρli+1 + 2ρli+2 − ρ2li+2

(1− ρ)2 (1− ρ2)
σ2

e , (A1)

the E term can be expressed as

1− ρli

1− ρ
Cov

(
ls−1

∑
k=li

ρk−li+1et− k
m

,
ls−1

∑
k=li

1− ρk+1

1− ρ
et− k

m

)

=
1

(1− ρ)2

ls−1

∑
k=li

(
1− ρk+1

)
ρk−li+1σ2

e

=
1

1− ρ

(
ρ

1− ρls−li

1− ρ
− ρ2 1− ρ2(ls−li)

1− ρ2

)
σ2

e

=

(
1− ρli

) [
ρ
(
1− ρls−li

)
(1 + ρ)− ρ2

(
1− ρ2(ls−li)

)]
(1− ρ)2 (1− ρ2)

σ2
e

=
ρ− ρls−li+1 − ρls−li+2 + ρ2(ls−li)+2 − ρli+1 + ρls+1 + ρls+2 − ρ2ls−li+2

(1− ρ)2 (1− ρ2)
σ2

e (A2)

the F term can be shown as

Cov

(
1− ρli

1− ρ

m−2

∑
k=ls

ρk−li+1et− k
m

,
1− ρls

1− ρ

m−2

∑
k=ls

ρk−ls+1et− k
m

)

=

(
1− ρli

) (
1− ρls

)
(1− ρ)2

m−2

∑
k=ls

ρ2k−li−ls+2σ2
e

=

(
1− ρli − ρls + ρli+ls

)
ρ−li+ls+2

(
1− ρ2(m−ls−1)

)
(1− ρ)2 (1− ρ2)

σ2
e

=

(
ρ−li+ls+2 − ρls+2 − ρ2ls−li+2 + ρ2ls+2) (1− ρ2(m−ls−1)

)
(1− ρ)2 (1− ρ2)

σ2
e

=
ρ−li+ls+2 − ρls+2 − ρ2ls−li+2 + ρ2ls+2 − ρ2m−ls−li + ρ2m−ls + ρ2m−li − ρ2m

(1− ρ)2 (1− ρ2)
σ2

e ,(A3)

and the G term is simply

ρ2m−li−ls
(
1− ρli

) (
1− ρls

)
(1− ρ)2 Var

(
Xh

t−m−1
m

)
=

ρ2m−li−ls
(
1− ρli

) (
1− ρls

)
(1− ρ)2

σ2
e

1− ρ2

=
ρ2m−li−ls − ρ2m−ls − ρ2m−li + ρ2m

(1− ρ)2 (1− ρ2)
σ2

e ,(A4)

4



combining the results from Equations (A1), (A2), (A3) and (A4), we have

Cov
(

X̄(li)
t , X̄(ls)

t

)
=

li
(
1− ρ2)− ρ− ρ2 + ρ2ls+2 − ρls−li+1 + ρ2(ls−li)+2 + ρls+1 − 2ρ2ls−li+2 + ρli+1 + 2ρli+2 − ρ2li+2

lils (1− ρ)2 (1− ρ2)
σ2

e

=
li
(
1− ρ2)+ ρ

(
1− ρli

) [
−1− ρls−li − ρ

(
1− ρli

)
+
(

1− ρls − ρls−li
)

ρls−li+1
]

lils (1− ρ)2 (1− ρ2)

=
li
(
1− ρ2)+ ρ

(
1− ρli

)
As,j

lils (1− ρ)2 (1− ρ2)
,

where
As,j ≡

(
1− ρls − ρls−lj

) (
ρls−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρls − 2.

This completes the proof.

Remark 1 Lemma 0 and the following Lemma 1 both assume a dynamic autoregressive
data generating process. The high frequency data Xh

t− i
m

in our exercise is the USSI variable,

which quantifies the consumers’ hourly sentiment change. Psychologically speaking, peo-
ple’s past sentiment usually affects his/her current sentiment. Therefore, the dynamic data
generating process assumption is more reasonable than the conventional i.i.d. assumption
in the MIDAS literature.

In line with Andreou et al. (2010), we define the aggregate regressor based on flat

weights as XA
t which is X̄(lp)

t in our case. Following Andreou et al. (2010), the regression
function can be decomposed as the combination of an equal weight component XA

t and a
non-equal weight component XB

t :

Yt = βXnew
t + εt = βX̃>t w + εt = β

p

∑
j=1

wjX̄
(lj)
t + εt

= β
p−1

∑
j=1

wjX̄
(lj)
t + β

(
wp − 1

)
X̄(lp)

t + βXA
t + εt

= β
p−1

∑
j=1

wjX̄
(lj)
t − β

p−1

∑
j=1

wjX̄
(lp)
t + βXA

t + εt

= βXB
t + βXA

t + εt, (A5)

where XB
t ≡ ∑

p−1
j=1 wj

(
X̄(lj)

t − X̄(lp)
t

)
. As shown in Lemma 1, omitting XB

t can introduce

bias to the estimation of β.
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Lemma 1 (Extended Version) Suppose Xh
t− i

m
is an AR(1) process

Xh
t− i

m
= ρXh

t− i−1
m

+ et− i
m

,

where |ρ| ∈ (0, 1) is the AR coefficient, and consider the H-MIDAS regression model in (A5).
Then, the simple averaging estimator that omits the non-equal weight component XB

t from
Model (A5) can introduce the asymptotic bias ABias

(
β̂, β
)
= γβ to the coefficient β, where

γ =
p−1

∑
j=1

wj

lj
ρ

Ap,jlp

(
1− ρlj

)
+ 2lj

(
1− ρlp

)
B


is the bias coefficient with

Ap,j ≡
(

1− ρlp − ρlp−lj
) (

ρlp−lj+1 + 1
)
− ρ

(
1− ρlj

)
+ ρlp − 2

and

B ≡
lp
(
1− ρ2)− 2ρ + 2ρlp+1

ρ
.

Proof of Lemma 1 Following the definition of omitted variable bias, we know that

γ =
Cov

(
XA

t , XB
t
)

Var
(
XA

t
) .

We first derive the covariance of XA
t and XB

t .

Cov
(

XA
t , XB

t

)
= Cov

(
X̄(lp)

t ,
p−1

∑
j=1

wj

(
X̄(lj)

t − X̄(lp)
t

))
=

p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t − X̄(lp)
t

)

=
p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t

)
−

p−1

∑
j=1

wjVar
(

X̄(lp)
t

)

=
p−1

∑
j=1

wjCov
(

X̄(lp)
t , X̄(lj)

t

)
−
(
1− wp

)
Var

(
X̄(lp)

t

)

= σ2
e

p−1

∑
j=1

wj

 lpρ
(

1− ρli
) [
−1− ρlp−li − ρ

(
1− ρli

)
+
(

1− ρlp − ρlp−li
)

ρlp−li+1
]
+ 2liρ− 2liρlp+1

lil2
p (1− ρ)2 (1− ρ2)

 .

Following the result in Lemma 0, we have

Var(XA
t ) =

lp
(
1− ρ2)− 2ρ + 2ρlp+1

l2
p (1− ρ)2 (1− ρ2) .
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Therefore,

γ =
Cov

(
XA

t , XB
t
)

Var
(
XA

t
)

=
p−1

∑
j=1

wj

lpρ
(

1− ρlj
) [
−1− ρlp−lj − ρ

(
1− ρlj

)
+
(

1− ρlp − ρlp−lj
)

ρlp−lj+1
]
+ 2ljρ− 2ljρ

lp+1

ljl2
p (1− ρ)2 (1− ρ2)

×
l2
p (1− ρ)2 (1− ρ2)

lp (1− ρ2)− 2ρ + 2ρlp+1

=
p−1

∑
j=1

wj

 lpρ
(

1− ρlj
) [
−1− ρlp−lj − ρ

(
1− ρlj

)
+
(

1− ρlp − ρlp−lj
)

ρlp−lj+1
]
+ 2ljρ− 2ljρ

lp+1

lj

[
lp (1− ρ2)− 2ρ + 2ρlp+1

]


=
p−1

∑
j=1

wj

lj
ρ

Ap,jlp

(
1− ρlj

)
+ 2lj

(
1− ρlp

)
B

 ,

where
Ap,j =

(
1− ρlp − ρlp−lj

) (
ρlp−lj+1 + 1

)
− ρ

(
1− ρlj

)
+ ρlp − 2,

and

B =
lp
(
1− ρ2)− 2ρ + 2ρlp+1

ρ
.

This completes the proof.

Remark 2 Lemma 1 states that converting high frequency series to low frequency series
using simple averaging is a special case of our H-MIDAS. Moreover, this special case is
biased since the non-equal weight component XB

t is omitted by simple averaging.
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B Detailed Description of the Forecasting Techniques

B.1 GUM, AIC, and PMA

Researchers who ignore model uncertainty implicitly assume their selected model is the
“true” one that generated the data (yt, X t) : t = 1, ..., n, where yt and X t = [xt1, xt2, ...] are
real-valued. We assume the data generating process for an outcome yt is given as

yt = µt + εt, (A6)

where µt = ∑∞
j=1 β jxtj, E(εt|X t) = 0 and E(ε2

t |X t) = σ2.

For researchers who admit ignorance of the true data generating process, they generally
select one model from a sequence of linear approximation models m = 1, 2, ..., M. An
approximation model m using kh regressors belonging to X t such that

yt =
kh

∑
j=1

βh
j xh

tj + εh
t for i = 1, ..., n, (A7)

where βh
j is a coefficient in model m and xh

tj is a regressor in model m. Approximation
models can be either nested or non-nested and model averaging approaches first involve
solving for the smoothing weights across the set of approximation models based on a
specific criterion. We assume that there are K regressors in total among all the potential
models. The general unrestricted model (GUM) is like a kitchen sink that consists of all the
K regressors we consider in explaining yt. All potential models are nested within GUM.

Formally, the DGP (A6) and approximation model (A7) can be represented in matrix
forms: y = µ+ ε and y = Xhβh + εh, where y is n× 1, µ is n× 1, Xh is n× kh with the tjth

element being xh
tj, βh is kh × 1 and εh is the error term for model m. For an approximation

model m, the least squares estimate of µ from model m can be written as µ̂h = Phy, where
Ph is a projection matrix.

Among all the model selection methods, the most widely used of these is probably the
Akaike information criterion, or AIC by Akaike (1973). There are many versions of AIC,
the one we considered is the following

AICh = n log(SSRh) + 2kh, (A8)

where SSRh is the sum of squared residuals from approximation model m.1 We choose the
model with the lowest AIC score.

On the other hand, model averaging simply assume that there is no one specific model
that dominates all others. Therefore, it is better to take a weighted average of all the

1 A more precise description of this version AIC is n log(SSRh) + 2kh + C with C being a constant term
irrelevant to m. Of course, the term C can be conveniently ignored, since only differences in AIC are mean-
ingful for model selection purpose.
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potential models. Let w =
[
w(1), ..., w(M)

]>
be a weight vector in the unit simplex in RM,

HM ≡
{

w ∈ [0, 1]M :
M

∑
m=1

wh = 1

}
,

which is a continuous set. We define the model average estimator of µ as

µ(w) ≡
M

∑
m=1

whµ̂h =
M

∑
m=1

whPhy. (A9)

By defining the weighted average projection matrix P(w) as P(w) ≡ ∑M
m=1 whPh, equation

(A9) can be simplified to µ(w) = P(w)y. Thus, the effective number of parameters to be
solved is defined as k(w) ≡ ∑M

m=1 whkh. Note that k(w) is not necessarily an integer and is
a weighted sum of the kh.

The prediction model averaging (PMA) estimator of Xie (2015) can be understood as
the model averaging analog of the prediction criterion of Amemiya (1980). Following Xie
(2015), the vector of empirical weight ŵ is the solution to

ŵ = arg min
w∈HM

PMAn(w) = arg min
w∈HM

(
y− µ(w)

)>(y− µ(w)
) (n + k(w)

n− k(w)

)
, (A10)

where µ(w) and k(w) are defined above. The PMA estimator is asymptotically optimal in
the sense of achieving the lowest possible mean square error.

B.2 Tree-based Algorithms

This section consists of four machine learning techniques. The building block is called the
regression tree (RT) proposed by Breiman, Friedman, and Stone (1984). Note that the full
name of the method is Classification and Regression Trees (CART), in which Classification
mostly deals with the categorical response of non-numeric symbols and texts and Regres-
sion Trees concentrate purely on quantitative responses variables. Given the numerical
nature of our data set, we only consider the second part of CART.

Consider the sample of {yt, X t}n
t=1 as defined in Section B.1. A simple regression will

yield a sum of squared residuals, SSR0. Suppose we can split the original sample into
two sub-samples such that n = n1 + n2. The RT method finds the best split of a sample
to minimize the SSR from the two sub-samples. That is, the variable and splitting point
are chosen to reduce the residual sum of squares (SSR) as much as possible after the
split as compared to before the split. This results in partitioning the data into groups that
are as different as possible. We can continue splitting the subsamples until we reach a
pre-determined stopping rule. To combat concerns related to overfitting, the tree can be
pruned using a cost-complexity criterion. This criterion takes into account the amount of
squared error explained by each sub-tree plus a penalty chosen by cross-validation for the
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number of terminal nodes in the sub-tree in an attempt to trade-off tree size and over-
fitting.

Forecasts from RT involve calculating the average of the outcome for the individuals
whose covariates land them in a specific terminal node calculated. Put simply, a local
constant model is estimated in each terminal node of the tree to generate a forecast. Lehrer
and Xie (2018) argue that in the presence of heteroskedastic data, splits made in the tree
are biased to be in regions of high heteroskedasticity at the expense of regions of low
heteroskedasticity. They additionally advocate using model averaging in place of the local
constant model in each terminal leave, an approach we did not consider since the sample
size in our application is quite small.

In general, an RT outperforms conventional regressions as it yields smaller SSR values
since it can allow for more general nonlinearities in the covariates. If the data are station-
ary and ergodic, the RT method also demonstrates better forecasting accuracy. Intuitively,
for cross-sectional data, the RT method performs better because it removes heterogeneity
problems by splitting the sample into clusters with heterogenous features; for time series
data, a good split should coincide with jumps and structure breaks, and therefore, it fits
the data to the model better.

We also consider the bootstrap aggregation (BAG) technique developed in Breiman
(1996). Unlike the RT method, the BAG method involves a training process where the
level of training is predetermined. The BAG algorithm is summarized as below:

(i) Take a random sample with replacement from the data.

(ii) Construct a regression tree.

(iii) Use the regression tree to make forecast, denoted by ŷ.

(iv) Repeat steps (i) to (iii), b = 1, ..., B times and obtain ŷb for each b.

(v) Take a simple average of the B forecasts ŷBAG = 1
B ∑B

b=1 ŷb and consider the averaged
value ŷBAG as the final forecast.

For most of the part, the more bootstrap samples in the training process, the better the
forecast accuracy. However, more bootstrap samples means longer computational time. A
balance needs to be found between accuracy and time costs and constraints.

The above algorithm is usually executed for cross-sectional data. When the data is time
series (dependent observations), we need to replace step (i) with specific bootstrap meth-
ods for time series based on different assumptions. A straightforward way is to bootstrap
the residuals instead of observations, in which the residual is estimated using an optimal
predictor of the X t’s. For observations following a stationary Markov chain with finite state
space, Kulperger and Prakasa Rao (1989) initiated the Markov bootstrap method. If we are
not willing to assume a specific structural form for a (stationary and weakly dependent)
time series, we can use the moving block bootstrap (MBB) method formulated by Künsch
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(1989). Instead of performing single-data resampling, Künsch (1989) advocated the idea
of resampling blocks of observations at a time. By retaining the neighboring observations
together within each block, the dependence structure of the random variable at short lag
distances is preserved. See Kreiss and Lahiri (2012) for a detailed literature review.

Random forest (RF) by Breiman (2001) is a modification of bagging that builds a large
collection of de-correlated trees, and then averages them. Similar to BAG, RF also con-
structs B new trees with (conventional or MBB) bootstrap samples from the original data
set. But for RF, as each tree is constructed, we take a random sample (without replace-
ment) of q predictors out of the total K (q < K) predictors before each node is split. Such
process is repeated for each node. In our application, q

K is set at its default value of 1
3 , and

the results are robust to other choices for how many variables to consider to split at each
node. Note that if q = K, RF is equivalent to BAG. Eventually, we end up with B trees like
BAG and the final RF forecast is calculated as the simple average of forecasts from each
tree.

The RT method can respond to highly local feature of the data, since it capitalizes on
very flexible fitting procedures. An alternative method to accommodate highly local fea-
tures of the data is to give the observations responsible for the local variation more weight
in the fitting process. If a fitting function fits those observations poorly, we reapply that
function with extra weight given to the observations poorly fitted. For a large number of
trials, we assign relatively more weights to the poorly fitted observations, hence, combine
the outputs of many weak fitting functions to produce a powerful committee, as described
in Hastie, Tibshirani, and Friedman (2009, Chapter 10).

The procedure we just described is called boosting (BOOST). Although they assemble
similarities, the boosting method is fundamentally different from the RF method. Boost-
ing works with the full training sample and all of the predictors. Within each iteration,
the poorly fitted observations are given more relative weight, which eventually forces the
(poor) fitting functions to evolve in boosting. Moreover, the final output values are a
weighted average over a large set of earlier fitting results instead of simple average as in
the RF method. In general, since boosting builds trees in a sequential manner, the size of
the trees are much shorter to be computationally efficient.

Many of the boosting methods are designed for classification issues, for example, the
most popular boosting algorithm AdaBoost.M1 by Freund and Schapire (1997). In this
paper, we consider a simple least squares boosting (LSB) that fits RT ensembles. In line
with Hastie et al. (2009, Chapter 8), at every step, the LSB method applies a new learning
tree to the difference between the observed response and the aggregated prediction of all
trees grown previously. The LSB method fits to minimize MSE.

B.3 Support Vector Machine for Regression

In machine learning, support vector machines (SVM) are supervised learning models with
associated learning algorithms that analyze data used for classification and regression anal-
ysis. The theory behind SVM is developed in Vapnik (1996). The classic SVM was designed
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for classification and a version of SVM for regression, later known as support vector regres-
sion (SVR), was proposed in by Drucker, Burges, Kaufman, Smola, and Vapnik (1996). The
goal of SVR is to find a function f (X t) that deviates from yt by a value no greater than a
predetermined e for each observations X t, and at the same time is as flat as possible.

In this paper, we first consider the SVR for the linear regression model (SVR1). Follow-
ing Hastie et al. (2009, Chapter 12),

yt = f (X t) + εt = X tβ + εt = β0 + X̃ tβ1 + εt,

where X t = [1, X̃ t] and β = [β0, β>1 ]
>. We estimate β through the minimization of

H(β) =
n

∑
t=1

Ve
(
yt − f (X t)

)
+

λ

2
‖β1‖

2, (A11)

where the loss function

Ve(r) =
{

0 if |r| < e
|r| − e otherwise

is called an e-insensitive error measure that ignores errors of size less than e. As a part of
the loss function Ve, the parameter e is usually predetermined. On the other hand, λ is a
more traditional regularization parameter, that can be estimated by cross-validation.

Let β̂ =
[
β̂0, β̂

>
1
]> be the minimizers of function (A11), the solution function can be

shown to have the form

β̂1 =
n

∑
t=1

(α̂∗t − α̂t)X̃>t ,

f̂ (X) =
n

∑
t=1

(α̂∗t − α̂t)XX>t + β̂0ιn,

where ιn is an n × 1 vector of ones and the parameters α̂t and α̂∗t are the nonnegative
multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

e
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yt(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t′=1

(α̂∗t − α̂t)(α̂
∗
t′ − α̂t′)X tX>t′

subject to the constraints 0 ≤ α̂∗t , α̂t ≤ 1/λ, ∑n
t=1(α̂

∗
t − α̂t) = 0, α̂tα̂

∗
t = 0 for all t = 1, ..., n.

We usually called the non-zero values of α̂∗t − α̂t for t = 1, ..., n the support vector.

We now extend the above SVR framework from linear regression to nonlinear regres-
sion. We approximate the nonlinear regression function f (X t) in terms of a set of basis
function {hm(X̃ t)} for m = 1, ..., M:

yt = f (X t) + εt = β0 +
M

∑
m=1

βmhm(X̃ t) + εt
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and we estimate the coefficients β =
[
β0, β1, ... , βM

]> through the minimization of

H(β) =
n

∑
t=1

Vε

(
yt − f (X t)

)
+

λ

2

M

∑
m=1

β2
m. (A12)

The solution of (A12) has the form f̂ (X) = ∑n
t=1(α̂

∗
t − α̂t)K(X, X t) + β̂0ιn with α̂∗t and α̂t

being the nonnegative multiplier of the following Lagrangian equation

min
α̂t,α̂∗t

e
n

∑
t=1

(α̂∗t + α̂t)−
n

∑
t=1

yt(α̂
∗
t − α̂t) +

1
2

n

∑
t=1

n

∑
t′=1

(α̂∗t − α̂t)(α̂
∗
t′ − α̂t′)K(X t, X t′)

similar to the linear SVR case. In the nonlinear SVR case, a kernel function K(X t, X t′) =
∑M

m=1 hm(X t)hm(X t′) is used to replace the inner product of the predictors X tX>t′ as in the
SVR1 case. In our paper, we consider the following kernel functions

K(X t, X t′) = exp
(
−‖X t − X>t′ ‖

2
)

, (A13)

K(X t, X t′) =
(

1 + X tX>t′
)p

with p ∈ {2, 3, ...}, (A14)

in which, we label the associated SVR model as SVR2 and SVR3, respectively.

C Comparing Daily USSI with Hourly USSI

In this section, we repeat our main empirical results presented in Section 5 where we use
the daily USSI instead of hourly USSI. The daily USSI is a simple weighted average of the
hourly USSI, where the weights are the hourly volume of tweets used in the construction
of the hourly USSI. The results presented below demonstrate that the main results are
robust. We continue to find that it important to incorporate the USSI in forecasting CCI,
the superiority of the proposed H-MIDAS estimator relative to other strategies to include
the CCI and the general improved forecast accuracy of machine learning strategies relative
to econometric estimators.

Table A1: Summary of Statistics of Daily USSI Variables

Variable Mean Median Minimum Maximum Std.Dev.
USSId 0.3595 0.9323 -18.6684 11.9494 6.3654

USSI′new 0.2962 0.2118 -15.0848 9.1623 5.6586

13



Figure A1: Estimated Weights for Daily USSI with Specific Lag Index
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(b) H-MIDAS on Daily USSI

Figure A2: Forecasting Performance of SVR1 Using Daily USSI as Input Data
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Table A2: Estimation Results with Daily USSI

Variables (1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Macroeconomic Variable

MCSI - - - 0.0820 -0.0084 0.0175 0.0853 0.0680
- - - (0.1992) (0.1905) (0.1902) (0.1997) (0.2044)

LEI - - - 0.6444 0.3579 0.5687 0.7309 0.5203
- - - (1.7782) (1.6852) (1.6810) (1.6833) (1.7329)

UR - - - -0.2761 -0.2469 -0.3109 -0.3113 -0.2838
- - - (0.6782) (0.6440) (0.6412) (0.6396) (0.6534)

SR - - - -0.7294 -0.5438 -0.4946 -0.3173 -0.3075
- - - (0.7965) (0.7639) (0.7593) (0.7745) (0.7953)

CPI - - - -0.4856 -1.0217 -0.6788 -0.7249 -0.8132
- - - (1.4254) (1.3319) (1.3497) (1.3470) (1.3830)

Panel B: Financial Variable
SP500 - - - -0.0184 0.0019 -0.0050 0.0122 0.0099

- - - (0.0816) (0.0778) (0.0774) (0.0787) (0.0809)
VIX - - - -0.0938 0.1681 0.0738 0.1045 0.2080

- - - (1.2296) (1.1706) (1.1643) (1.1617) (1.1906)
USD - - - 3.6418 3.9614∗ 3.4278 2.8672 2.8250

- - - (2.4772) (2.3218) (2.3431) (2.3928) (2.4391)
TS - - - 100.8794 97.7550 96.9602 72.5226 93.5743

- - - (75.7207) (72.1231) (71.5883) (74.8274) (80.6411)

Panel C: Big Data Variable
USSIa - - - - - - - -0.1867

- - - - - - - (0.3308)
USSIh - - - - - - - 0.0994

- - - - - - - (0.1602)
USSInew 0.5479� - - - - - 0.2407 0.2759

(0.1067) - - - - - (0.2203) (0.2301)
USSId - 0.4262� - 0.3740� - 0.1683 0.1595 0.0849

- (0.0940) - (0.1077) - (0.1336) (0.1335) (0.1982)
USSI′new - - 0.5167� - 0.4675� 0.3481† 0.1750 0.1686

- - (0.1021) - (0.1124) (0.1464) (0.2154) (0.2198)

Panel D: Goodness of Fit
R2

c 0.3546 0.2997 0.3480 0.3738 0.4322 0.4549 0.4720 0.4821
R̃2 (0.3412) (0.2851) (0.3345) (0.2132) (0.2865) (0.2971) (0.3007) (0.2750)
∗ 10% level of significance.
† 5% level of significance.
� 1% level of significance.

Table A3: Daily USSI Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3
Panel A: Mean Squared Forecast Error (MSFE)
Mnew 14.1906 15.1128 13.2115 18.7820 12.5265 13.6034 18.5529 10.3271� 19.6891 24.8384
Md 16.9378 17.5787 16.9245 26.5476 14.7155 15.8912 28.1784 12.1432 19.7022 27.4054
M′

new 19.6599 17.7067 18.2117 35.3171 14.7824 15.0189 26.7917 11.9981 19.7905 39.4239
M′

all 18.4680 16.5564 15.9801 26.2613 12.8549 12.9826 20.5764 13.9349 19.7615 39.0403

Panel B: Mean Absolute Forecast Error (MAFE)
Mnew 2.7981 2.7415 2.6811 3.0674 2.5939 2.7793 3.4075 2.5035� 3.7456 3.7854
Md 3.3534 3.4959 3.4380 3.9928 2.8991 2.9925 3.9965 2.9837 3.7207 4.5058
M′

new 3.4512 3.0836 3.0908 4.2269 2.7442 2.7923 4.0550 2.7254 3.7539 4.7528
M′

all 3.1581 2.7500 2.7642 4.1651 2.6184 2.6592 3.8997 2.8705 3.7325 4.5498

Note: numbers with � indicate the best performing methods in each panel.
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D More Empirical Results

This section presents the tables associated with a variety of robustness checks that are
referenced in the main text. For example, we present a variant of Table 3 where we
replicate the results of Table 3 for a 2-period-ahead forecasting exercise, These results are
presented in Table A4. Similar to the results in the main text, SVR1 under Mnew has the
best forecasting accuracy (indicated by the � symbol) in both panels.

Table A4: Two-period-ahead Forecasting Results Measured by MSFE and MAFE

GUM AIC PMA RT BAG RF BOOST SVR1 SVR2 SVR3

Panel A: Mean Squared Forecast Error (MSFE)
M0 18.2308 18.3155 19.0210 17.1771 15.2140 16.1259 43.0629 26.1228 20.2316 73.9860
Ma 20.2511 18.3089 18.3411 16.1720 16.0738 16.6856 46.2792 15.0084 20.3537 45.3306
Mm 24.5094 21.8483 24.9359 25.5146 17.4539 16.0889 46.8264 27.6693 20.3768 40.2297
Mnew 15.3268 14.1511 14.5746 35.9327 17.8323 17.5119 30.8213 13.1977� 20.5168 46.1630
Mall 26.6746 15.5066 16.9475 42.3883 20.2647 18.2060 45.2701 18.5380 20.7128 31.9512

Panel B: Mean Absolute Forecast Error (MAFE)
M0 3.8519 3.6987 3.8723 3.6061 3.4920 3.4551 5.0305 4.5402 3.7657 6.2458
Ma 4.0248 3.6965 3.8063 3.3751 3.5468 3.4833 5.6841 3.5076 3.7593 5.7095
Mm 4.4515 4.2879 4.5581 4.3620 3.5388 3.3646 5.8107 4.7262 3.7756 5.4154
Mnew 3.6007 3.3624 3.4939 4.2865 3.7569 3.6214 5.0424 3.2378� 3.7881 5.4488
Mall 4.6207 3.5139 3.7173 4.9082 3.8264 3.6267 5.3703 3.7880 3.7978 4.8966

Note: numbers with � indicate the best performing methods in each panel.
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