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Abstract
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dia data. We first develop a model averaging heterogeneous autoregression estimator
and prove that it is asymptotically optimal. Second, we use a deep learning algorithm
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social media can significantly improve the forecasting accuracy of financial volatility.
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1 Introduction

Volatility is the most important variable in the pricing of derivative securities. Further,

regulators require the financial industry to incorporate time-varying volatility in their

risk management models. Given the interest in having accurate volatility forecasts, a

burgeoning literature has developed estimators that often include lagged values of the

dependent variable to forecast financial market volatility. The inclusion of lagged depen-

dent variables is motivated by the well established property that volatility possesses a

slow decaying autocorrelation function, usually termed long-memory.1 To contrast the

performance of different estimators developed for volatility forecasting, assessments are

commonly structured to hold the test asset and estimation strategy fixed, but vary the

model specification of the lag index.

In this paper, we first propose a model averaging estimator as a means to solve any

potential uncertainty in the specification of the lag index of the heterogeneous autoregres-

sive realized volatility model (HAR) of Corsi (2009). Since the HAR is easy to implement

it has become one of the most popular estimators to forecast indices such as the Chicago

Board Options Exchange Volatility Index (VIX). This estimator can also approximate the

long memory and multiscaling properties of realized volatility.2 We extend the predic-

tion model averaging (PMA) estimator of Xie (2015) to the dynamic HAR framework.3 A

1This phenomenon has also been uncovered by Dacorogna, Műller, Nagler, Olsen, and Pictet (1993),
Andersen, Bollerslev, Diebold, and Labys (2001b) for the foreign exchange market and Andersen, Bollerslev,
Diebold, and Ebens (2001a) for stock market returns.

2Fernandes, Medeiros, and Scharth (2014) perform a thorough statistical examination of the time-series
properties of the VIX index and propose using the HAR-type models for modeling and forecasting pur-
poses. See Vortelinos (2017) for further discussion.

3Corsi, Audrino, and Renò (2012) point out that most HAR-type models fixate on using the lag index
[1, 5, 22] to reflect the daily, weekly, and monthly contributions to the volatility process. Our approach dif-
fers from both Wang, Ma, Wei, and Wu (2016) and Craioveanu and Hillebrand (2012) who respectively
considered a Bayesian model averaging approach to deal with specification uncertainty on the control vari-
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model averaging estimator generates a weighted average model using all the approxima-

tion models and can be viewed as general case of forecast combination.4 We prove that

the model averaging HAR (henceforth MAHAR) estimator is asymptotically optimal in

the sense of achieving the lowest possible mean squared error.

A secondary aim of this study is to examine whether broad measures of social media

sentiment calculated by a deep learning algorithm improve volatility forecasts. The po-

tential for machine learning and social media data to influence stock markets is tantalizing

to many, and in response numerous companies have already rapidly developed products

to measure the mood or sentiment on social media platforms for individual investors and

hedge funds.5 Beyond understanding if social media sentiment holds significant explana-

tory power, our application illustrates how one needs to properly aggregate social media

data that is measured at a higher frequency than many measures of volatility.6 This anal-

ysis informs volatility modelling a subject of interest to practionners in risk management

and asset allocation.

To examine the empirical performance of the proposed MAHAR estimator, we first

conduct a Monte Carlo study and second undertake an assessment of forecasting the

VIX using data collected between 2013-2017. We compare MAHAR to the original HAR

ables in the various HAR-type models and a parallel computing method to investigate the lag structure of
HAR-like models.

4Bates and Granger (1969) introduces forecast combination and Timmermann (2006) provides a recent
survey of developments in forecast combination a popular method since numerous studies have found it
yields better forecasts on average than methods based on the ex ante best individual forecasting model.

5The idea that sentiment and emotions of market participants can influence the performance of the
stock market is often discussed in both the media and research studies in the field of behavioral finance.
As such, firms are developing products that trade on this information posted on social media. Additional
motivation for our study comes from Ted Merz, the content business manager at Bloomberg who recently
stated, “Trump tweets cause volatility is unquestionable.”

6This aggregation is consistent with Nofer and Hinz (2015), who find that one must properly account for
spread of mood states on Twitter. It is worth noting that prior work (see e.g. Zhang, Fuehres, and Gloor,
2011 and Bollen, Mao, and Zheng, 2011) documenting associations between social media sentiment and
financial market performance generally uses a less sophisticated sentiment analysis.
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model of Corsi (2009) and several popular extensions to the multivariate model. These

extensions include Fernandes et al. (2014) who allows for asymmetric effects on volatility

dynamics and the estimator of Audrino and Knaus (2016), which uses the Lasso to de-

termine the components of the lag index.7 Put differently, the potential success of model

averaging mirrors forecast combinations and is related to the evidence that a decision

maker in almost all cases cannot identify ex ante the exact true data generating process,

but different models play a complementary role in approximating it.8

Our empirical results find that the MAHAR estimator has significantly greater fore-

cast accuracy than other HAR-type estimators. Further, we present evidence that sug-

gests incorporating Twitter sentiment measures can greatly improve forecasts of the VIX

index. Specifically, we find that including sentiment measures from Twitter significantly

improves forecast accuracy in the short term and that their forecasting power declines as

we increase the forecasting horizon.

The remainder of this paper is organized as follows. In the next section, we discuss

how the VIX index is measured and provide a more detailed overview of existing HAR

strategies used to forecast the VIX index. In Section 3 we propose the MAHAR strat-

egy, prove that it is asymptotically optimal and compare the finite sample performance

of MAHAR relative to other HAR estimators using a Monte Carlo study. Our empirical

application and data that we utilize including how Twitter sentiment measures are cal-

culated and aggregated to be measured at the same daily frequency as the VIX index is

described in Section 4. We also discuss the results of the out of sample forecasting exer-

7In the Section 2, we review extensions to the HAR model that accommodate other features including
jumps, leverage effects, and other nonlinear behaviors.

8Since the VIX is measured on a daily basis, we do not consider volatility prediction models based on
high-frequency realized volatility measures and stochastic volatility models.

4



cise that provide strong evidence of the benefits of both the MAHAR estimator relative

to other HAR estimators and incorporating social media data when forecasting volatility.

Our conclusions are presented in Section 5.

2 Strategies to Forecast the VIX Index

The Chicago Board Options Exchange Volatility Index (VIX) is a popular measure of the

stock market’s expectation of volatility implied by S&P 500 index options. It is collo-

quially referred to as the “fear index” or the “fear gauge”. The VIX index measures the

market expectations of the near-term volatility implied by stock index option prices. The

VIX index is calculated as a weighted blend of prices for a range of options on the S&P

500 index,9 using the following formula

VIX = 100 ·

√√√√ 2
T ∑

i

∆Ki

K2
i

erTQ(Ki)−
1
T

(
F

K0
− 1
)2

, (1)

where T is time to expiration, F is the forward index level derived from the index options

prices, Ki is the strike price of the ith out-of-the-money option, ∆Ki = (Ki+1−Ki−1)/2, K0

is the first strike below the forward index level, r is the risk-free interest rate to expiration,

and Q(Ki) is the mid-quote for the option with strike of Ki.

Following Fernandes et al. (2014), we use the HAR model of Corsi (2009) to approxi-

mate the VIX index. This model postulates that h-step-ahead daily volatility yt+h can be

9The VIX is quoted in percentage points and represents the expected range of movement in the S&P 500
index over the next year, at a 68% confidence level (i.e. one standard deviation from the mean under the
normal probability density curve).
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modeled as

yt+h = β0 + βdȳ(1)t + βwȳ(5)t + βmȳ(22)
t + εt+h, (2)

where we define

ȳ(l)t ≡ l−1
l

∑
s=1

yt−s (3)

as the averages of the previous l periods of y from period t and {εt}t is a zero mean

innovation process. Practitioners often select a lag index vector l = [1, 5, 22], to mirror the

daily, weekly, and monthly components of the volatility process being forecasted.

The HAR model in Equation (2) can be estimated using OLS and Fernandes et al.

(2014) allow for a more persistent volatility process, l = [1, 5, 10, 22, 66]. It is simple to

incorporate a K-dimensional set of exogenous regressors zt = [z1t, ..., zKt] into Equation

(2), generating

yt+h = β0 + βdȳ(1)t + βwȳ(5)t + βmȳ(22)
t + ztβz + εt+h, (4)

where βz represent the associated coefficients for zt. Note that all the exogenous variables

zt are measured h periods before the dependent variable yt+h. We refer to the above HAR

model with exogenous variables as HARX, and through the remainder of the text, X refers

to specifications that additionally control for exogenous covariates.10

A popular variant of the HARX specification allows the exogenous variables zt to

10The univariate HAR was first extended to allow for jumps, leverage effects, and other nonlinear be-
haviors to the multivariate context. Corsi, Pirino, and Renò (2010) use the C-Tz test for jumps detection
and threshold bipower variation to estimate relevant parameters. Bollerslev, Litvinova, and Tauchen (2006)
stress the importance of allowing for the asymmetric leverage effects. Patton and Sheppard (2015) extend
the HAR model by incorporating the realized semivariances variables first proposed in Barndorff-Neilsen,
Kinnebrouk, and Shephard (2010). More complicated nonlinear effects, including structural breaks and
regime-switches, are modeled by McAleer and Medeiros (2008) and Scharth and Medeiros (2009). Corsi
et al. (2012) provide a comprehensive survey on the development of HAR-type models.
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have asymmetric effects on volatility dynamics and is known as the asymmetric HARX

(henceforth AHARX) model. Following Fernandes et al. (2014), AHARX is expressed as

yt+h = β0 + βdȳ(1)t + βwȳ(5)t + βmȳ(22)
t + z−t β−z + z+t β+

z + εt+h, (5)

where z−t = [z−1t, ..., z−Kt] and z+t = [z+1t, ..., z+Kt] for k = 1, ..., K, with

z−kt =

 zktI(zkt < 0) if a return

zktI(∆zkt < 0) if in levels
z+kt =

 zktI(zkt > 0) if a return

zktI(∆zkt > 0) if in levels

and I(·) is an indicator function that equals one if the argument of the function is satisfied.

Since the VIX index is calculated daily based on implied volatility, we focus on the original

HAR models and do not consider the innovation-type HAR models.

Each HAR model defined in equations (2), (4), and (5) can be reexpressed in compact

matrix form as

yt+h = xt(l)β + εt+h, (6)

where β is the L× 1 coefficient vector and xt(l) is the independent variable for some L× 1

vector of lag indices l = (l1, ..., lp) ∈ Z
p
+ with p being the maximum positive order of lags,

such that

xt(l) ≡



[
1, ȳ(l1)t , ..., ȳ(lp)

t
]

for model HAR in (2),[
1, ȳ(l1)t , ..., ȳ(lp)

t , zt
]

for model HARX in (4),[
1, ȳ(l1)t , ..., ȳ(lp)

t , z−t , z+t
]

for model AHARX in (5).

(7)

Since Model (6) contains an infeasible yt+h, in practice the series {yt, 1 ≤ t ≤ T} is pre-
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sumably approximated by a HAR-type model with h-period-ahead forecast horizon if it

satisfies

yt = xt−h(l)β + εt for any h ∈ Z+, (8)

where εt is generic (weak) white noise. Currently, the choice of index vector l in the lit-

erature is generally made as either l′ ≡ [1, 5, 22] or l′′ ≡ [1, 5, 10, 22, 66]. These choices

for l appear to be made to mirror intuitive concepts like daily, weekly, and monthly com-

ponents of the volatility process, rather than have a formal justification. Further, Corsi

(2009) demonstrate that the out-of-sample performance of the standard HAR model with

a fixed l′ is often unstable and can depend on the level of noise contained in the underly-

ing pricing series of the asset considered.

Since the arrival frequency of new information changes an asset’s volatility, it will

be important for forecast accuracy. However, the arrival frequency is unknown to the

forecaster. Audrino and Knaus (2016) propose using the least absolute shrinkage and se-

lection operator (Lasso) to determine the components of the lag index vector for the HAR

model. For l = [1, 2, ..., p], the Lasso estimator considers the constrained least-squares es-

timates for Model (8) subject to the constraint ∑L
j=1 |β j| < c for some constant c. Audrino

and Knaus (2016) show that the Lasso recovers the lag index structure of the HAR model

asymptotically. This estimator crucially relies on the assumption that the HAR model is

the true model that generates the data. We denote this estimator as LHAR and Audrino

and Knaus (2016) find that LHAR does not exhibit gains in performance relative to the

conventional HAR model. This result is not surprising since Belloni and Chernozhukov

(2013) show that the Lasso can induce bias and asymptotic risk.11 In the next section,

11In general, the benefits from applying the Lasso method instead of OLS exist in some cases where either
the number of regressors exceeds the number of observations since it involves shrinkage, or in other cases
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we propose an alternative estimator that does not make this strong assumption and can

allow for more general specifications of the contents of the index vector than either the

HAR, HARX or AHARX models.

3 A New Strategy to Forecast Volatility

To circumvent the issue of lag index uncertainty, we suggest applying a model averag-

ing estimator to the HAR framework. We name this method as model averaging HAR

(MAHAR) and the framework is flexible to incorporate control variables.12 The starting

point is to assume there is a set of M candidate models that approximate the unknown

DGP. Within any candidate model, r denotes the maximal lag order of yt available for

t = −r + 1, ..., T, so that the vector of observations of the dependent variable [y1, ..., yT]
>

in every candidate model is [y1, ..., yT]
>. Thus,

ȳ(l) =
[
ȳ(l)1 , ..., ȳ(l)T

]>
and X =

[
1, ȳ(1), ..., ȳ(r), Z

]
,

where ȳ(l)t is defined in Equation (3) and Z = [Z1, . . . , ZT]
> is a T × q matrix containing

explanatory regressors.13 We assume q is fixed and X is assumed to have full column

rank in the unrestricted model.14 The unrestricted model can be expressed as y = Xβ+ ε,

where ε = [ε1, ..., εT]
>.

The regressor matrix Xm of the mth candidate model is formed by combining columns

where the number of parameters is not small relative to the sample size and some form of regularization is
necessary. However, these cases do not apply to our VIX modeling exercises.

12Note, the technique derived in this paper can be easily applied to other forecasting models.
13These regressors may demonstrate significant forecasting power on yt in a finite sample.
14Note this matrix X differs from the Y L term in Zhang, Wan, and Zou (2013), since the former includes

ȳ(l) terms, whereas the latter consists of lagged y terms.
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in
[
ȳ(1), ..., ȳ(r)

]
, 1, and Z. If we collect the lag index of the component in X into the vector

lfull ≡ [1, 2, ..., r], the lag index vector of Xm, denoted as lm, is simply a subset of lfull. The

mth candidate model can be written as

y = Xmβm + εm,

where ε = [ε1, ..., εT]
>. Note that all candidate models and even the unrestricted model

can be misspecified. The least squares estimate of βm is β̂
m

=
(
Xm>Xm)−1Xm>y. Fol-

lowing Hansen (2008), the optimal mean-square forecast is the conditional mean µT+1.

Therefore, the least-squares forecast of yT+1 from the mth approximation model is then

ŷm
T+1 = µ̂m

T+1 = xm
T+1
>β̂

m
. Thus, µ̂m is defined as the vector of the estimated conditional

means from model m.

We obtain forecasts of yT+1 from all approximation models and define the vector

ŷT+1 ≡
[
ŷ1

T+1, ŷ2
T+1, · · · , ŷM

T+1

]>
. (9)

The model averaging forecast is simply the weighted average of ŷT+1, such that

ŷT+1(w) ≡ w>ŷT+1 =
M

∑
m=1

wmŷm
T+1,

where w =
[
w1, ..., wM]> is a weight vector in the unit simplex in RM

H ≡
{

w ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
.

We require the weights to be non-negative and sum to one, since Hansen (2008) and Xie
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(2015) suggest that relaxing the non-negativity restriction in least squares model averag-

ing estimation can result in poor empirical performance.

The performance of model averaging forecast crucially depends on the criterion used

to estimate the weight vector w. The MAHAR criterion aims to balance the fit and the

complexity of a model:

MAHAR(w) =
(
y− µ̂(w)

)>(y− µ̂(w)
) (T + k(w)

T − k(w)

)
, (10)

where k(w) ≡ ∑M
m=1 wmkm is the effective number of parameters and the model averaging

estimator of the conditional mean is

µ̂(w) ≡
M

∑
m=1

wmµ̂m. (11)

The empirical weight vector ŵ, is obtained from the MAHAR criterion

ŵ = arg min
w∈H

MAHAR(w).

With the MAHAR empirical weight vector, we can calculate the model averaging forecast

ŷT+1(ŵ) = ŵ>ŷT+1. The MAHAR estimator is an extension of the PMA estimator of Xie

(2015) in the HAR framework.

3.1 Asymptotic Optimality of MAHAR

Proving the asymptotic optimality of the MAHAR estimator relies on applying results

in mathematical statistics developed by Ing and Wei (2003), in which a crucial condition
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requires yt to follow the stationary AR(∞) process

yt =
∞

∑
l=1

alyt−l + et, i = ...,−1, 0, 1, ... (12)

where et follows the i.i.d. process with mean 0 and variance σ2, ∑∞
l=1 |al| < ∞, and 1 +

∑∞
l=1 alvl is bounded away from zero for |v| ≤ 1. For the results of Ing and Wei (2003) to

be applicable to our setting, we first demonstrate that the HAR model can be rewritten

as a restricted AR process. We now define the projection matrices P ≡ X(X>X)−1X and

M ≡ IT − P.

Following Corsi (2009), the HAR model with lag order vector l = [l1, l2, ...lp] ∈ Z
p
+

(l1 < l2 < ... < lp) is closely related to the conventional AR(lp) model. For simplicity, if

we ignore any control variable, we can rewrite the HAR model

yt = β0 + β1ȳ(l1)t + β2ȳ(l2)t + ... + βpȳ(lp)
t + εi,

as a restricted AR(lp) model, in which

yt = β0 +
lp

∑
s=1

φHAR
s yt−s + εi (13)

with restrictions

φHAR
s =



1
l1

β1 +
1
l2

β2 + ... + 1
lp

βp for s = 1 to l1

1
l2

β2 + ... + 1
lp

βp for s = (l1 + 1) to (l2 − 1)
...

1
lp

βp for s = (lp−1 + 1) to lp.

(14)

12



That is, the restrictions require the equality between certain specific coefficients among

the set of lp lag coefficients of AR(lp).

Remark In the literature, it is conventional to set l′ = [1, 5, 22] or l′′ = [1, 5, 10, 22, 66]. The

former is proposed by Corsi (2009) to mirror the daily (d), weekly (w), and monthly (m)

components of the volatility process, whereas the latter proposed in in Fernandes et al.

(2014), mimics the daily, bi-weekly, monthly, and quarterly components of the time series

process. Consider l′, the HAR model

yt = β0 + β(d)ȳ
(1)
t + β(w)ȳ

(5)
t + β(m)ȳ

(22)
t + εt,

is simply a constrained AR(22) model

yt = c +
22

∑
s=1

φHAR
s yt−s + εi,

where the restrictions imposed require

φHAR
s =


βd +

1
5 βw + 1

22 βm for s = 1

1
5 βw + 1

22 βm for s = 2, ..., 5

1
22 βm for s = 6, ..., 22.

Although a direct specification test of the validity of these restrictions may appear

sensible, Audrino and Knaus (2016) points out this test usually leads to the rejection of

the Null due to an excessive number of restrictions being imposed. Further, since the true

DGP in (12) can never be achieved, every model used in practice is an approximation

with specification error.
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Let µt = E(yt|yt−l, yt−2, . . .) and µ = (µ1, . . . , µT)
>. We consider the following squared

error loss:

LT(w) = ‖µ̂(w)− µ‖2,

where µ̂(w) is the model averaging estimator of the conditional mean defined in Equation

(11). Let A(w) = IT−P(w), RT(w) = ‖A(w)µ‖2 +σ2tr{P(w)P(w)}, ξT = infw∈HT RT(w),

and e = (e1, . . . , eT)
>. We demonstrate the asymptotic optimality of the MAHAR estima-

tor in the following theorem.

Theorem 1 The MAHAR estimator is asymptotically optimal such that

LT(ŵ)

infw∈HT LT(w)

p→ 1,

if the following conditions hold:

(C.1) r4ξ−1
T = op(1), T−1µ>µ = Op(1), and r4µ>Pµξ−2

T = op(1) ;

(C.2) T−1/2Z>e = Op(1), S(T−1Z>Z) = Op(1), and S
(
(T−1Z>MZ)−1

)
= Op(1);

(C.3) there exist some positive constants α1, α2 and α3 such that |Fi(d1) − Fi(d2)| ≤ α3|d1 −

d2|α1 for all i when |d1 − d2| ≤ α2; and

(C.4) either r6+α4 = O(T) for some α4 > 0 and sup−∞<i<∞ Ee4
i < ∞, or r2+α4 = O(T) for

some α4 > 0 and sup−∞<i<∞ Ees
i < ∞ for all s,

where Fi(·) is the distribution function of et, and S(B) denotes the largest singular value of a

matrix B.
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See Appendix A for a detailed proof. Briefly, the first and third parts of Condition (C.1)

place restrictions on the orders of r and ξT. The second part of Condition (C.1) concerns

the average of µ2
i ’s and a similar condition is used in Shao (1997). Condition (C.2) holds

when T−1Z>Z and T−1Z>MZ converge to positive definite matrices in probability and

{Ztet} is a stationary and ergodic martingale difference sequence with finite fourth mo-

ments. Conditions (C.3) and (C.4) focus on properties of the least squares predictor with

the observations generated by an AR(∞) process and were initially drawn from Ing and

Wei (2003) and discussed in further detail in Zhang et al. (2013). Note that Condition (C.3)

is mild and can be easily fulfilled by any distribution with a bounded density. Condition

(C.4) requires a tradeoff between the existence of higher moments of ei and the order r.

3.2 Monte Carlo Study

To examine the finite sample performance of the proposed MAHAR method, we conduct

the following Monte Carlo study. We assume that the true series for yt is generated by a

long memory ARFIMA(p, d, q) process with a white noise term drawn from N(0, σ2). In

our simulation design, we set p = 0.8, q = 0.1, d = 0.3, and σ = 1. We vary both the

sample size (T = 100, 200, 300, and 400) and forecast horizons (h = 1, 2, 4 and 8) across

our study.

Since the true model form is unknown to researchers, they often construct forecasts of

yt+h using the following HAR model

yt+h = β0 + β1ȳ(1)t + ... + βl ȳ
(l)
t + εt,
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for l = 1, 2, ..., 10.

Given max(l) = 10, we have in total 210 = 1024 approximation models; assuming

each model includes a constant term. Xie (2015) points out that model screening should

be considered to limit the number of approximation models whenever max(l) is a rela-

tively large number, for both practical and theoretical considerations.15 Thus, we compare

the forecast accuracy of the MAHAR method with and without model screening, where

we use the heteroscedasticity-robust model screening (HRMS) method of Xie (2017). In

addition, we examine how the performance of the MAHAR method compares to both

the conventional HAR model of Corsi (2009) and the Lasso-HAR method proposed in

Audrino and Knaus (2016).

We compare the forecasting methods based on the following out-of-sample mean-

square forecast error (MSFE),

MSFE =
T
σ2

(
E (yt+h − ŷt+h)

2 − σ2
)

.

In the above equation, we subtract the error variance σ2 since it is also included in the

leading term in the MSFE and is common across all forecast methods. The term (T/σ2)

is used to render the results scale-free. We compute the MSFE by computing averages

across 10,000 simulation draws.

The results of the Monte Carlo experiments are presented in Table 1 where we use

MAHAR1 and MAHAR2 to respectively denote with and without model screening. As

the forecast horizon increases, all methods tend to yield higher MSFEs. Since we are pri-

15That said, in practice there remains the possibility that model screening accidentally removes useful
candidate models, which would jeopardize forecasting accuracy.
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marily interested in the relative performance of the four methods, we normalize all MSFEs

by the MSFE of MAHAR2 for all cases. Entries larger than one indicating performance of

the respective estimator relative to MAHAR without model screening.

Table 1: Simulation Results
Horizon HAR LHAR MAHAR1 MAHAR2

T = 100
1 1.1953 1.1326 1.0023 1.0000
2 1.1452 1.1163 1.0441 1.0000
4 1.1550 1.1451 1.0099 1.0000
8 1.1920 1.1803 0.9979 1.0000

T = 200
1 1.0667 1.0544 0.9720 1.0000
2 1.0528 1.0466 1.0244 1.0000
4 1.0316 1.0287 1.0062 1.0000
8 1.0326 1.0300 0.9865 1.0000

T = 300
1 1.0238 1.0145 0.9839 1.0000
2 1.0337 1.0305 1.0055 1.0000
4 1.0389 1.0380 1.0044 1.0000
8 1.0179 1.0170 0.9997 1.0000

T = 400
1 1.0167 1.0120 0.9720 1.0000
2 1.0284 1.0267 0.9977 1.0000
4 1.0134 1.0129 1.0018 1.0000
8 1.0158 1.0151 0.9984 1.0000

Note: Bold numbers with the best performance in that simulation experi-
ment denoted by the row of the table. The remaining entries provide the
ratio of the degree of the respective forecast error metric of the estimator
using specific estimation approach denoted in the column relative to re-
sults using the MAHAR2 method presented in the last column.

Table 1 shows that the performance of MAHAR1 and MAHAR2 always beat HAR

and LHAR. The superior performance of MAHAR1 and MAHAR2 is more significant in

small sample size, and the performance of HAR and LHAR get closer to MAHAR1 and

MAHAR2 as sample size increases. In all cases, we cannot distinguish MAHAR1 from

MAHAR2. Not surprisingly, HAR is the most computationally efficient and MAHAR2 is

the least efficient since it creates candidate models constructed from the full permutation

of all potential explanatory variables. Both LHAR and MAHAR1 take more CPU time to

execute than HAR. Taken together, we interpret these results as suggesting that proper
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model screening can dramatically reduce CPU time and be applied without jeopardizing

forecast accuracy.

4 Data and Empirical Exercise

To examine the relative prediction efficiency of different HAR estimators with different

ways of accounting for social media data, we conduct an h-step-ahead rolling window

exercise of forecasting the VIX for different forecasting horizons. Table 2 lists each esti-

mator analyzed in the exercise and for LHAR and LHARX* we choose the value for the

tuning parameter (λ) that minimizes five-fold cross-validation. Contrasting forecasts be-

tween the second and third panel of the Table allows us to ascertain if social media data

improves forecast accuracy and we use the ? symbol to distinguish variants of the same

estimator for specifications that additionally include social media data. When consid-

ering uncertainty in lag order specification for both LHARX and MAHARX (as well as

LHARX* and MAHARX*), we let l = [1, 2, ..., 22] instead of l′. Throughout the experi-

ment, the window length is fixed at 600 observations (approximately half of the sample).

We additionally varied window lengths and found the conclusions were robust to altering

the size of the window.

Since social media data from Twitter is only recently available, we use data from Jan-

uary 7, 2013 to August 21, 2017 for this exercise. The evolution of the log of VIX index

over this full sample period is presented in Figure 2(a). The VIX index has high degrees of

persistence, a feature many empirical strategies account for by including lags of the VIX

index as explanatory variables. To facilitate comparisons with Fernandes et al. (2014), we

use an identical set of exogenous control variables. These variables include the logarithm
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Table 2: List of Estimators
Panel A: Econometric Strategies Considered without Additional Controls
(1) RW a random walk model
(2) HAR the conventional HAR model proposed in Corsi (2009) with l = l′

Panel B: Econometric Strategies Considered with Traditional Control Variables
(3) HARX the conventional HAR model proposed in Corsi (2009) with l = l′
(4) AHARX the modified HAR model of Fernandes et al. (2014) with l = l′
(5) LHARX the Lasso-HAR method proposed in Audrino and Knaus (2016) with l = [1, 2, ...22]
(6) MAHARX the model averaging extension of the HAR estimator proposed in this paper with l = [1, 2, ...22]

Panel C: Econometric Strategies Considered with Traditional Control Variables and Social Media Sentiment
(7) HARX* the conventional HAR model proposed in Corsi (2009) with l = l′
(8) AHARX* the modified HAR model of Fernandes et al. (2014) with l = l′
(9) LHARX* the Lasso-HAR method proposed in Audrino and Knaus (2016) with l = [1, 2, ...22]

(10) MAHARX* the model averaging extension of the HAR estimator proposed in this paper with l = [1, 2, ...22]

of the daily S&P500 index (SPX), volume of the S&P500 index (SPV), one-month crude

oil futures contract (OIL), foreign exchange value of the US dollar index (USD), measures

of the credit spread (CS), term spread (TS), and the difference between the effective and

target Federal Funds rates (FFD).16

To measure social media sentiment, we use the deep learning algorithm developed in

Felbo, Mislove, Søgaard, Rahwan, and Lehmann (2017), which is also used to create the

Wall Street Journal - IHS U.S. Sentiment Index (USSI). In brief, for a random sample of

10% of all tweets every minute, the score is calculated as an equal tweet weight average

of the sentiment values of the words within them.17 Sentiment analysis is one of the main

challenges in natural language processing and the algorithm we selected was trained on

124.6 million tweets containing emojis. The algorithm does not score individual emo-

tion words in a Twitter message, but rather calculates a score based on the probability of

each of 64 different emojis capturing the sentiment in the full Twitter message taking the

16The measure of credit spread is obtained from the excess yield of the Moody’s seasoned Baa corporate
bond over the Moody’s seasoned Aaa corporate bond. The term spread (TS), is calculated as the difference
between the 10-Year and 3-month treasury constant maturity rates.

17This is a 10% random sample of all tweets since the USSI was designed to measure the real time mood
of the nation and the algorithm does not restrict the calculations to Twitter accounts that either mention any
specific stock or are classified as being a market participant.

19



structure of the sentence into consideration. Thus, each emoji has a fixed score and the

sentiment of a message is a weighted average of the type of mood being conveyed. Since

the algorithm considers the ordering of all the words in a Twitter message, it should not

be surprising that tests of the validity of the Felbo et al. (2017) algorithm with samples

drawn from Amazon mechanical turk, have found it to be more accurate than competing

sentiment algorithms. These competing algorithms range from less advanced methods

that simply code messages using a binary indicator such as positive or not, to those based

on scoring words via emotional valence.

Since the VIX index is measured at the daily level, we need to convert one-minute

level USSI data to a daily measure. Prior work has shown that Mi(xed) Da(ta) S(ampling)

regression (henceforth MIDAS regression) are useful in empirical practice where the rel-

evant information is high frequency data, whereas the quantity of interest is a low fre-

quency process. Lehrer, Xie, and Zeng (2018) propose the H-MIDAS strategy to weight

observations from the high-frequency social media data to construct a measure at a lower

frequency. The key feature is that the method allows for potential unsystematic hetero-

geneity in the weights used across time for the high frequency variable, thereby allowing

for a more gradual depreciation relative to the common implementation of MIDAS.18

By using H-MIDAS, we transform 1,711,230 minute level observations for USSI vari-

able into 1,206 daily observations for the USSI. The estimated weights used in the H-

MIDAS transformation are presented in Figure 1. The weights display sharp variability

in their importance throughout the day, particularly during time periods in which North

American financial markets are closed. The weights are generally larger in the middle of

18This heterogeneity arises in part since social media users often revise their beliefs and comments in
response to new information from the crowd. Further details of H-MIDAS are provided in Appendix C.
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the graph that corresponds to the time when financial markets are operating.

Figure 1: Weights on the High Frequency Observations under Different Lag Indices
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Figure 2(b) graphs the evolution of the one day lag of the H-MIDAS transformed USSI

variable across the full sample period. The correlation between the VIX index and the

one day lag of the USSI is 0.81. While the USSI series displays more volatility, ocular tests

suggest that it does track trends in the VIX index presented in Figure 2(a).

Table 3 presents summary statistics for the data and p-values from both the Jarque-

Bera test for normality and of the Augmented Dickey-Fuller (ADF) tests for unit root.

With the exception of SPX, SPV and USD, each of the series exhibits tremendous vari-

ability and a large range across the sample period. Further, while none of the series are

normally distributed, the ADF test concludes that the SPX, OIL, USD, CS, and TS series
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Figure 2: The Daily Indices of VIX and USSI from January 7, 2013 to August 21, 2017
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are nonstationary at 5% level. As such, we transformed each of these series to stationary

by taking their first difference. ADF tests of first differences are presented in the last row

of Table 3 and confirm that each transformed data series exhibits stationary.

4.1 Results of the Empirical Exercise

The results of the prediction experiment are presented in Table 4. The estimation strategy

is listed in the first column and the remaining columns presents alternative criteria to
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Table 3: Descriptive Statistics
VIX SPX SPV OIL USD CS TS FFD USSI

Mean 2.6645 7.5913 21.9734 4.1445 4.4435 0.8979 2.0212 -0.0242 99.6868
Median 2.6254 7.6168 21.9662 3.9750 4.4885 0.8700 2.0300 -0.0150 98.5333
Minimum 3.7072 7.8164 22.7511 4.7026 4.5737 1.5400 2.9700 0.0350 133.7845
Maximum 2.2364 7.2842 20.1000 3.2869 4.2946 0.5300 1.0800 -0.3400 77.9024
Std. Dev. 0.2118 0.1232 0.1942 0.3808 0.0891 0.2329 0.4839 0.0409 9.3420
Skewness 1.0294 -0.4378 -0.9182 0.0892 -0.2776 0.9318 -0.0657 -1.0690 0.8104
Kurtosis 4.4941 2.6915 12.7020 1.5444 1.3478 3.2782 1.9709 6.3046 3.7692

Jarque-Bera 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF test 0.0000 0.0730 0.0000 0.8146 0.9606 0.9498 0.2269 0.0000 0.0000
∗ADF test on ∆1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∗We also perform ADF test on the first difference (∆1) of each data series.

evaluate the forecasting performance. The criteria include: (i) mean squared forecast error

(MSFE), (ii) standard deviation of the forecast error (SDFE), (iii) mean absolute forecast

error (MAFE), and (iv) the Mincer-Zarnowitz pseudo R2. Each panel of Table 4 present

result corresponding to scenarios of h-step-ahead forecasts of [1, 5, 10, 22].

To ease interpretation, the results that identify the estimator with the best performance

in each column of Table 4 is presented in bold. Across all h-step forecast lengths and fore-

casting performance criteria, MAHARX? method displays the best performance. For each

panel, MAHARX demonstrates improved performance relative to HARX and MAHARX?

similarly outperforms HARX?. The performance of Lasso based methods are unstable

and both LHARX and LHARX? perform poorly in most forecast horizons. This set of

results suggests that the uncertainty in the specification of the lag index cannot be fully

accommodated by dimension reduction estimators.

Second, when comparing the panels of estimators across Table 4, there is clear evi-

dence that those which incorporate the Twitter sentiment measure (denoted with ?) yield

improved performance, irrespective of the forecast horizon. This result provides the

first piece of suggestive evidence demonstrating the importance of using social media
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data in this VIX forecasting exercise.19 The gains from including Twitter sentiment are

stronger when the forecast horizon is shorter. Forecasting efficiency between MAHARX

and MAHARX? improves by 30% in Panel A and the gains drop to 1.3% in Panel D.

To examine if the improvement in including social media sentiment data in forecasting

exercise are statistically significant, we perform the modified Giacomini-White test (Gia-

comini and White, 2006) of the null hypothesis that the column method performs equally

well as the row method in terms of MAFE. The corresponding p-values are presented in

Table 5, in which each panel stands for a specific forecasting horizon varying between 1

to 22 days. To ease interpretation, the p-values smaller than 0.05 are presented in bold.

When the forecast horizon is a single day, the gains in forecast accuracy from MAHARX?

relative to all other strategies are statistically significant. Further, all estimators that incor-

porate the Twitter sentiment exhibit significantly better performance relative to the same

estimator that excludes social media data. This provides the strongest evidence of the

benefits from incorporating social media data, although we note that the benefits decrease

and become statistically insignificant with longer forecast horizons. The test statistics pro-

vide convincing evidence that accommodating model uncertainty with model averaging

estimators is important in practice since irrespective of the forecast horizon, MAHARX

significantly outperforms HARX; as MAHARX? outperforms HARX?.

To provide additional guidance to researchers, we examine the characteristics of the 5

models that were given the largest weight in the MAHARX? one-day ahead forecasting

exercise with the full sample. Table 6 lists each of the potential explanatory variables in

the first column and in columns 2 to 7 we denote which variables are included in the se-
19In Appendix B, we present additional illustrations of this benefit obtained from one-step-ahead fore-

casts calculated from OLS regressions that include the Twitter measure as an explanatory variable.
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Table 4: Forecasting Performance at Different Horizons
MSFE SDFE MAFE Pseudo R2

Panel A: 1 Days Ahead
RW 0.0069 0.0830 0.0578 0.9036
HAR 0.0068 0.0828 0.0576 0.9041
HARX 0.0069 0.0830 0.0574 0.9036
AHARX 0.0069 0.0832 0.0576 0.9031
LHARX 0.0068 0.0826 0.0570 0.9040
MAHARX 0.0067 0.0817 0.0567 0.9064
HARX? 0.0049 0.0698 0.0514 0.9317
AHARX? 0.0049 0.0701 0.0516 0.9310
LHARX? 0.0051 0.0713 0.0544 0.9288
MAHARX? 0.0047 0.0683 0.0503 0.9348

Panel B: 5 Days Ahead
RW 0.0294 0.1715 0.1202 0.5895
HAR 0.0280 0.1674 0.1206 0.6085
HARX 0.0264 0.1626 0.1195 0.6310
AHARX 0.0270 0.1645 0.1195 0.6225
LHARX 0.0272 0.1648 0.1153 0.6109
MAHARX 0.0256 0.1600 0.1166 0.6428
HARX? 0.0253 0.1592 0.1176 0.6465
AHARX? 0.0260 0.1611 0.1183 0.6377
LHARX? 0.0249 0.1577 0.1124 0.6499
MAHARX? 0.0244 0.1563 0.1147 0.6589

Panel C: 10 Days Ahead
RW 0.0452 0.2127 0.1490 0.3705
HAR 0.0434 0.2084 0.1562 0.3950
HARX 0.0373 0.1930 0.1470 0.4801
AHARX 0.0394 0.1985 0.1491 0.4514
LHARX 0.0394 0.1986 0.1388 0.4354
MAHARX 0.0364 0.1907 0.1460 0.4923
HARX? 0.0360 0.1898 0.1434 0.4978
AHARX? 0.0406 0.2014 0.1516 0.4334
LHARX? 0.0365 0.1909 0.1367 0.4795
MAHARX? 0.0353 0.1879 0.1423 0.5080

Panel D: 22 Days Ahead
RW 0.0589 0.2426 0.1758 0.1924
HAR 0.0595 0.2439 0.2007 0.1777
HARX 0.0397 0.1992 0.1543 0.4560
AHARX 0.0419 0.2047 0.1595 0.4266
LHARX 0.0464 0.2155 0.1596 0.3544
MAHARX 0.0383 0.1957 0.1510 0.4750
HARX? 0.0392 0.1980 0.1528 0.4629
AHARX? 0.0431 0.2076 0.1630 0.4086
LHARX? 0.0405 0.2013 0.1501 0.4347
MAHARX? 0.0378 0.1943 0.1494 0.4830

This table reports the out-of-sample results for predicting h-day future realized
variation using the different predictor variables and risk models. The results
are based on the CBOE VIX data spanning from January 7, 2013 to August 21,
2017 (a total of 1,206 observations). We use a rolling window of 600 observa-
tions to estimate the coefficients of the models, and evaluate the out-of-sample
forecast performance at four horizons (h = 1, h = 5, h = 10 and h = 22). Each
panel in the table corresponds to a specific forecast horizon, which varies from
1 day to 22 days. Bold numbers indicate the best performing model by each
criterion at each forecast horizon.
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Table 5: Giacomini-White Test Results
RW HAR HARX AHARX LHARX MAHARX HARX? AHARX? LHARX?

Panel A: 1 Days Ahead
RW - - - - - - - - -
HAR 0.8347 - - - - - - - -
HARX 0.9996 0.7772 - - - - - - -
AHARX 0.8304 0.6840 0.7789 - - - - - -
LHARX 0.8380 0.9806 0.8316 0.7193 - - - - -
MAHARX 0.2058 0.1042 0.0096 0.1229 0.1776 - - - -
HARX? 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 - - -
AHARX? 0.0000 0.0001 0.0001 0.0000 0.0003 0.0002 0.5630 - -
LHARX? 0.0015 0.0021 0.0017 0.0009 0.0035 0.0042 0.3073 0.5012 -
MAHARX? 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0153 0.0229

Panel B: 5 Days Ahead
RW - - - - - - - - -
HAR 0.4343 - - - - - - - -
HARX 0.2319 0.3853 - - - - - - -
AHARX 0.2230 0.5437 0.6841 - - - - - -
LHARX 0.3241 0.9311 0.5630 0.6737 - - - - -
MAHARX 0.1268 0.1828 0.0413 0.3405 0.3692 - - - -
HARX? 0.1018 0.1651 0.0055 0.2695 0.3104 0.6439 - - -
AHARX? 0.1012 0.2619 0.7310 0.1084 0.3928 0.7941 0.6384 - -
LHARX? 0.0057 0.0917 0.4904 0.2435 0.0429 0.7960 0.8923 0.5978 -
MAHARX? 0.0458 0.0637 0.0010 0.0954 0.1783 0.0070 0.0407 0.2476 0.7183

Panel C: 10 Days Ahead
RW - - - - - - - - -
HAR 0.6465 - - - - - - - -
HARX 0.1902 0.1785 - - - - - - -
AHARX 0.1971 0.2367 0.5918 - - - - - -
LHARX 0.2079 0.5727 0.6008 0.8332 - - - - -
MAHARX 0.1370 0.1215 0.1273 0.4254 0.5013 - - - -
HARX? 0.1290 0.1132 0.0120 0.3850 0.4670 0.5237 - - -
AHARX? 0.4283 0.5571 0.4080 0.5396 0.9832 0.2715 0.2481 - -
LHARX? 0.0326 0.1759 0.9929 0.6260 0.2505 0.8372 0.7674 0.5346 -
MAHARX? 0.1049 0.0894 0.0087 0.2864 0.4033 0.0212 0.1508 0.1731 0.6491

Panel D: 22 Days Ahead
RW - - - - - - - - -
HAR 0.9119 - - - - - - - -
HARX 0.0647 0.0158 - - - - - - -
AHARX 0.1078 0.0378 0.5248 - - - - - -
LHARX 0.1451 0.2107 0.3053 0.4893 - - - - -
MAHARX 0.0510 0.0104 0.0147 0.3339 0.2365 - - - -
HARX? 0.0584 0.0143 0.0317 0.4326 0.2722 0.1308 - - -
AHARX? 0.1513 0.0654 0.3425 0.3481 0.6298 0.2103 0.2807 - -
LHARX? 0.0458 0.0684 0.7914 0.9170 0.1004 0.6307 0.7225 0.7651 -
MAHARX? 0.0444 0.0089 0.0006 0.2472 0.2043 0.0314 0.0046 0.1551 0.5563

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row
method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the absolute
forecast error. Corresponding p values for a number of forecasting horizons (h = 1, 5, 10, 22) are reported in Panels A to D,
respectively. Bold numbers indicate the null hypothesis can be rejected at 5% level of significance.
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lected model with an “x”. The models are arranged from that with the highest weight to

the fifth highest weight and the overall MAHARX? model is presented in column 7. No-

tice first that consistent with other work using model averaging (e.g. Durlauf, Navarro,

and Rivers, 2016, Lehrer and Xie (2017, 2018) among others), we observe that very few

models account for the majority of the weights in the final MAHARX? estimate. The top

three models account for 90% of the weight and four explanatory variables are common

in these models: ȳ(1)t , ȳ(21)
t , ȳ(22)

t , and the USSI variable. The weekly lagged variable does

not enter in any of the top models. The inclusion of the USSI in each of the top models

reinforces the importance of incorporating the social media sentiment in volatility fore-

casts, even though the bottom row of the table shows that gain in the centered R2 when

models include the USSI is quite small and of the order of 3-5%.

In Appendix D, we first provide evidence of the robustness of our main findings to

using an equal weighted measure of the USSI. We then conduct further analyses and

statistical tests that indicates forecasts with the H-MIDAS transformed USSI are signifi-

cantly more accurate than predictions using the equal weighted USSI. This latter finding

is consistent with Nofer and Hinz (2015), who also show that one must properly account

for how information on Twitter is transmitted over the course of the day when under-

taking financial forecasts. Finally, adding confidence to the conclusions we draw in this

section, is all of our initial analyses used a shorter time series for the forecasting exer-

cise. We found each of our main findings were robust and strengthened as we added

additional months of data from 2017, a period where the financial environment exhibited

much lower volatility.
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Table 6: Describing the 5 Highest Weight Models
Model 1 Model 2 Model 3 Model 4 Model 5 MAHARX?

Weight 0.3086 0.2927 0.2263 0.1116 0.0546
HAR 1-day Average x x x x x x
HAR 2-day Average x
HAR 3-day Average x
HAR 4-day Average x
HAR 5-day Average x
HAR 6-day Average x
HAR 7-day Average x
HAR 8-day Average x
HAR 9-day Average x
HAR 10-day Average x
HAR 11-day Average x x
HAR 12-day Average x
HAR 13-day Average x
HAR 14-day Average x x x
HAR 15-day Average x x x x
HAR 16-day Average x x x
HAR 17-day Average x
HAR 18-day Average x
HAR 19-day Average x
HAR 20-day Average x x x
HAR 21-day Average x x x x
HAR 22-day Average x x x x x x
S&P500 1-day Return x
S&P500 5-day Return x
S&P500 10-day Return x
S&P500 22-day Return x
S&P500 Volume Change x
Oil 1-day Return x x
Oil 5-day Return x
Oil 10-day Return x
Oil 22-day Return x
USD Change x
Credit Spread x x x x x
Term Spread x
FF Deviation x x x x x x
U.S. Sentiment Index x x x x x x
R2 w/ SV. 0.9076 0.9084 0.9079 0.9083 0.9081 0.9092
R2 w/o SV. 0.8737 0.8750 0.8743 0.8750 0.8746 0.8793

Note: Symbol “x” denotes that explanatory variable is included in the particular model, SV de-
notes social media data.
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5 Conclusion

In this paper, we introduce a new model averaging estimator that allows for model uncer-

tainty in the specification of the lag index when using the HAR to forecast volatility. We

conduct h-step ahead prediction exercises for the VIX index to contrast the empirical per-

formance of the MAHAR estimator to popular estimators to forecast volatility. Our em-

pirical results find that the MAHAR estimator has significantly greater forecast accuracy

than other HAR-type estimators. This result is consistent with the heterogeneous market

hypothesis that suggests that financial market volatility arises since market participants

interpret the same information in different ways according to their trading preferences

and opportunities.

Further, our empirical analysis finds that when conducting forecasts in short time hori-

zons, there are benefits from incorporating social media data. These results are robust to

the inclusion of additional data that captures an extended period of low volatility which

on the one hand is unsurprising since appropriate model specifications may vary across

periods of different volatility. On the other hand, the continued importance of social

media data demonstrates that this all user-aggregated data captures some relevant infor-

mation related to investor sentiment. Extending the econometric methodology to both

use less time-aggregated sources of social media data and forecast measures of realized

volatility, present an agenda for future research.
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APPENDIX

A Proof

Proof of Theorem 1 Note that

PMA(w) = LT(w) + ‖e‖2 + 2e>µ− 2e>P(w)µ + 2σ2tr
(
P(w)

)
− 2e>P(w)e.

Since the terms ‖e‖2 and e>µ are independent of the weight vector w, Theorem 1 is valid
if the following hold:

sup
w∈HT

∣∣σ2tr
(
P(w)

)∣∣
RT(w)

p→ 0, (A.1)

sup
w∈HT

∣∣e>P(w)e
∣∣

RT(w)

p→ 0, (A.2)

sup
w∈HT

∣∣e>P(w)µ
∣∣

RT(w)

p→ 0, (A.3)

sup
w∈HT

∣∣∣∣ LT(w)

RT(w)
− 1
∣∣∣∣ p→ 0, (A.4)

as n→ ∞.

Since for any δ > 0,

Pr

{
sup

w∈HT

∣∣σ2tr
(
P(w)

)∣∣
RT(w)

≥ δ

}
≤ Pr{rξ−1

T ≥ δσ−2} → 0

according to (C.1). We obtain (A.1).

Let y(−i) = [y1−i, ..., yn−i]
>, U = [1, y(−1), . . . , y(−r), Z]. By conditions (C.2) – (C.4),

the proof of (A.63) of Zhang et al. (2013), and Lemma 4 and Theorem 2 of Ing and Wei
(2003), we have

T−1r−1e>UU>e = Op(1) (A.5)

and
T · S

(
(U>U)−1

)
= Op(1). (A.6)
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Let

B∗ =



1 1 1 1 1 · · · 1
0 1 1/2 1/3 1/4 · · · 1/r
0 0 1/2 1/3 1/4 · · · 1/r
0 0 0 1/3 1/4 · · · 1/r
0 0 0 0 1/4 · · · 1/r
...

...
...

...
... . . . ...

0 0 0 0 0 · · · 1/r


and B =

(
B∗ 0
0 Iq

)
,

then X = UB. It it easily to see that

S(BB>) = Op(r). (A.7)

From (A.5), (A.6) and (A.7), we have

T−1r−2e>XX>e = T−1r−2e>UBB>U>e
≤ r−1S(BB>)T−1r−1e>UU>e = Op(1) (A.8)

and

r−2T · S
(
(X>X)−1

)
= r−2T · S

(
(B>U>UB)−1

)
= r−2T · S

(
B>
−1

(U>U)−1B−1
)

= r−2T · S
(

B>
−1) S ((U>U)−1

)
S
(

B−1
)

= Op(1). (A.9)

By (A.8), (A.9), Markov inequality, and (C.1), for any δ > 0,

Pr

{
sup

w∈HT

∣∣e>P(w)e
∣∣

RT(w)
≥ δ

}
≤ Pr{ξ−1

T e>Pe ≥ δ} = Pr
{

ξ−1
T e>X(X>X)−1X>e ≥ δ

}
≤ Pr

{
r4ξ−1

T r−2T · S
(
(X>X)−1

)
T−1r−2e>X>Xe ≥ δ

}
→ 0.

We obtained (A.2).20

To verify (A.3), we first show∣∣∣e>P(w)µ
∣∣∣ = ∣∣∣e>P(w)Pµ

∣∣∣ ≤ (e>P(w)e µ>Pµ
)1/2 ≤

(
e>Pe µ>Pµ

)1/2.

20For convenience, we underlined the terms that converge to 0.
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Moreover, according (A.8) and (A.9), we have

r−4e>Pe = Op(1). (A.10)

Then,

sup
w∈HT

∣∣e>P(w)µ
∣∣

RT(w)
≤ ξ−1

T
(
e>Pe µ>Pµ

)1/2

=
(
r−4e>Per4µ>Pµξ−2

T
)1/2

→ 0,

that is (A.3).

Since∣∣∣∣ LT(w)

RT(w)
− 1
∣∣∣∣ =

∣∣∣∣∣e>P(w)P(w)e− σ2tr
(
P(w)P(w)

)
− 2e>P(w)A(w)µ

RT(w)

∣∣∣∣∣ ,

to prove (A.4), it suffices to show that

sup
w∈HT

∣∣σ2tr
(
P(w)P(w)

)∣∣
RT(w)

p→ 0, (A.11)

sup
w∈HT

∣∣e>P(w)P(w)e
∣∣

RT(w)

p→ 0, (A.12)

sup
w∈HT

∣∣e>P(w)A(w)µ
∣∣

RT(w)

p→ 0, (A.13)

Based on the proof of (A.1) and (A.2), it is straightforward to verify that, for any δ > 0

Pr

{
sup

w∈HT

∣∣σ2tr
(
P(w)P(w)

)∣∣
RT(w)

≥ δ

}
≤ Pr

{
sup

w∈HT

∣∣σ2tr
(
P(w)

)∣∣
RT(w)

≥ δ

}
→ 0,

Pr

{
sup

w∈HT

∣∣e>P(w)P(w)e
∣∣

RT(w)
≥ δ

}
≤ Pr

{
sup

w∈HT

∣∣e>P(w)e
∣∣

RT(w)
≥ δ

}
→ 0.

We obtain (A.11) and (A.12). Since∣∣∣e>P(w)A(w)µ
∣∣∣ = ∣∣∣e>P(w)µ− e>P(w)P(w)µ

∣∣∣ ,
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and we already proved (A.3), to prove (A.13), we only need to verify

sup
w∈HT

∣∣e>P(w)P(w)µ
∣∣

RT(w)

p→ 0. (A.14)

We see that∣∣∣e>P(w)P(w)µ
∣∣∣ = ∣∣∣e>P(w)P(w)Pµ

∣∣∣ ≤ (e>P(w)e µ>Pµ
)1/2 ≤

(
e>Pe µ>Pµ

)1/2.
(A.15)

Following the proof of (A.3) and (A.15), we have

sup
w∈HT

∣∣e>P(w)P(w)µ
∣∣

RT(w)
≤ ξ−1

T
(
e>Pe µ>Pµ

)1/2

=
(
r−4e>Per4µ>Pµξ−2

T
)1/2

= op(1).

This completes the proof.

B OLS Estimation

We present OLS estimates from a one-step-ahead forecasting with full data sample in
Table A1. The explanatory variables are listed in the first column of Table A1. Columns
2 to 5 respectively presents results of the following models: (i) conventional HAR model
with no control variables; (ii) the HARX1 model with all exogenous variables but USSI;
(iii) the HARX2 model with the USSI variable only as the sole exogenous explanatory
variable; and (iv) the HARX? model with all of the exogenous variables included. The last
two columns of Table A1 show the centered R2 and adjusted R2 respectively. Numbers
with symbol ∗, ∗∗, or ∗ ∗ ∗ represent significance level at 10%, 5%, or 1%, respectively.

We observe that the HAR 1-day average component is always highly significant among
all four models, which implies that the VIX index is quite persistent. Interestingly, all
other HAR component are not statistically significant at conventional levels, with the
exception of the HAR 22-day average component in HARX? (10% significance). The
columns of Models HARX1 and HARX? indicate that, most of the exogenous explana-
tory variables do not have significant associations with the VIX index. In fact, only the
S&P 500 22-day Return, the Credit Spread, and the FF Deviation are observed to have
any significant forecasting power. On the other hand, the USSI variable does exhibit a
strong association with the VIX. The strength of its forecasting power in similar in both
the HARX2 and HARX? model, suggesting that it is capturing different information than
the control variables. In summary, the results in Table A1 show that the USSI variable is
a very useful predictor of the VIX index and there is strong uncertainty in both the HAR
components and other exogenous variables.
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Table A1: Estimation Results with USSI

Variable HAR HARX1 HARX2 HARX?

(USSI Only)

Constant 0.1293∗∗∗ 0.2857∗∗∗ 0.2207∗∗∗ 0.0029
(0.0342) (0.0475) (0.0415) (0.0441)

HAR 1-day Average 0.9211∗∗∗ 0.9262∗∗∗ 0.9107∗∗∗ 0.7129∗∗∗

(0.0297) (0.0450) (0.0296) (0.0409)
HAR 5-day Average -0.0250 -0.0513 -0.0292 -0.0251

(0.0566) (0.0706) (0.0563) (0.0616)
HAR 22-day Average 0.0434 -0.0012 -0.0090 -0.0668∗

(0.0334) (0.0439) (0.0359) (0.0385)
S&P500 1-day Return 0.5541 0.3878

(0.4151) (0.3624)
S&P500 5-day Return -0.0441 -0.0140

(0.2633) (0.2298)
S&P500 10-day Return 0.1306 0.0786

(0.2036) (0.1777)
S&P500 22-day Return -0.2414∗ -0.1670

(0.1246) (0.1088)
S&P500 Volume Change -0.1304 -0.1416

(0.1237) (0.1080)
Oil 1-day Return 0.0924 0.0824

(0.0785) (0.0685)
Oil 5-day Return -0.0292 -0.0149

(0.0615) (0.0536)
Oil 10-day Return -0.0230 0.0010

(0.0316) (0.0276)
Oil 22-day Return -0.0146 -0.0053

(0.0124) (0.0108)
USD Change -0.1746 -0.4682

(0.5424) (0.4737)
Credit Spread 0.0162∗∗∗ 0.0085∗∗∗

(0.0051) (0.0045)
Term Spread 0.0880 -0.0026

(0.0630) (0.0552)
FF Deviation 0.0714∗∗∗ 0.0330∗∗

(0.0159) (0.0140)
U.S. Sentiment Index 0.0532∗∗∗ 0.0092∗∗∗

(0.0139) (0.0005)

Centered R2 0.8752 0.8790 0.8768 0.9079
Ajusted R2 0.8747 0.8772 0.8762 0.9064
∗ 10% level of significance.
∗∗ 5% level of significance.
∗∗∗ 1% level of significance.
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C The Heterogeneous MIDAS Approach

In this section, we briefly explain the H-MIDAS method introduced in Lehrer et al. (2018).
Let Yt be a low frequency variable that is sampled at periods denoted by a time index t
for t = 1, ..., n. Consider a higher frequency (indicated by a superscript h throughout the
paper) predictor Xh

t that are sampled m times within the period of t:

Xh
t ≡

[
Xh

t , Xh
t− 1

m
, ..., Xh

t−m−1
m

]>
. (A.16)

A specific element among the high frequency observations in Xh
t is denoted by Xh

t− i
m

for i = 0, ..., m− 1. Denoting Li/m as the lag operator, then Xh
t− i

m
can be reexpressed as

Xh
t− i

m
= Li/mXh

t for i = 0, ..., m− 1.

Since Xh
t on Yt are measured at different frequencies, we need to convert the higher-

frequency data to match the lower-frequency data. A simple average of the high fre-
quency observations Xh

t :

X̄t =
1
m

m−1

∑
i=0

Li/mXh
t ,

where X̄t is likely the easiest way to estimate a low frequency Xt that can match the
frequency of Yt. With the variables Yt and X̄t are measured in the same time domain, a
regression approach is simply

Yt = α + γX̄t + εt = α +
γ

m

m−1

∑
i=0

Li/mXh
t + εt, (A.17)

where α is the intercept, γ is the slope coefficient on the time-averaged X̄t. This approach
assumes that each element in Xh

t has an identical effect on explaining Yt since they all
share the same coefficient γ.

These homogeneity assumptions may be quite strong in practice. One could assume
that each of the slope coefficients for each element in Xh

t is unique. Extending Model
(A.17) to allow for heterogeneous effects of the high frequency observations generates

Yt = α +
m−1

∑
i=0

γiLi/mXh
t + εt, (A.18)

where γi represents a set of slope coefficients for all high frequency observations Xh
t− i

m
.

Since γi is unknown, estimating these parameters can be problematic when m is a
relatively large number.The H-MIDAS method uses a step function to allow for hetero-
geneous effects of different high frequency observations on the low frequency dependent
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variable. A low frequency X̄(l)
t can be constructed following

X̄(l)
t ≡

1
l

l−1

∑
i=0

Li/mXh
t =

1
l

l−1

∑
i=0

Xh
t− i

m
, (A.19)

where l is a pre-determined number and l ≤ m. Equation (A.19) implies that we com-
pute variable X̄(l)

t by a simple average of the first l observations in Xh
t and ignored the

remaining observations. We consider different values of l and group all X̄(l)
t into X̃ t such

that

X̃ t =

[
X̄(l1)

t , X̄(l2)
t , . . . , X̄(lp)

t

]
,

where we set l1 < l2 < · · · < lp. Consider a weight vector w =
[
w1, w2, . . . , wp

]>
with

∑
p
j=1 wj = 1, we can construct regressor Xnew

t as Xnew
t = X̃ tw. The regression based on

the H-MIDAS estimator can be expressed as

Yt = βXnew
t + εt = β

p

∑
s=1

p

∑
j=s

wj

lj

ls−1

∑
i=ls−1

Li/mXh
t + εt = β

p

∑
s=1

ls−1

∑
i=ls−1

w∗s Li/mXh
t + εt, (A.20)

where l0 = 0 and w∗s = ∑
p
j=s

wj
lj

can be interpreted as the weights on the high frequency
observations.

The weights w play a crucial role in this procedure. We first estimate β̂w following

β̂w = arg min
w∈W

∥∥Yt − X̃ t · βw
∥∥2

by any appropriate econometric method necessary, where W is some predetermined
weights set. Once β̂w is obtained, we estimate the weight vector ŵ by rescaling following

ŵ =
β̂w

Mean(β̂w)
,

since the coefficient β is a scalar.

In practice, we need to select the lag index l = [l1, ..., lp] and determine the weight set
W before the estimation. In this exercise, we apply the H-MIDAS method to the USSI data
using four sets of lag indices: l = [1 : d : 1000], where d = 1, 10, 30, and 60 in the sense of
capturing 1, 10, 30, and 60 minutes-level components of the USSI data. For the weight set
W , we follow Kuersteiner and Okui (2010) and set W ≡ {w ∈ [−1, 1]p : ∑

p
j=1 wj = 1}.

Then, we use OLS to estimate β̂w. Estimates of the H-MIDAS weights for our application
are presented in the main text in Figure 1.
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D Results of Using Equal Weighted Average USSI

In this section, we explore the robustness of our results to a simple equal weighted aver-
age USSI. This measure is simple to calculate and in essence we are simply only replacing
the H-MIDAS step. In the remainder of the section, we use the subscript a to denote
specifications that incorporate the average weighted Twitter sentiment measure. The first
main result we examine the robustness of to this alternative means of incorporating social
media data is the prediction experiment that was presented in Tables 4 and 5.

Tables A2 and A3 show that all of the conclusions we drew from Tables 4 and 5 are ro-
bust to replacing the H-MIDAS transformed USSI to an the equal weighted USSI. Notice
that, MAHARXa demonstrates better forecasting accuracy than other estimators consid-
ered in Table A2 for short forecasting horizons. As the forecasting horizon increases, the
results also find that the benefits from incorporating the USSI diminish sharply. These
results parallel those presented in the main text.

The improvement in forecast accuracy between MAHARXa relative to MAHARX ap-
pears to be smaller than the gap MAHAR exhibits with MAHARX∗. Thus, we next for-
mally compare the forecasting efficiency of using simple equal weighted average USSI
with H-MIDAS weighted average USSI. The results of forecasting comparison are pre-
sented in Table A4. MAHARX∗ using H-MIDAS weighted average USSI has better per-
formance since the equal weighted USSI imposes a homogeneity assumption that induces
bias during the frequency matching procedure.

To examine if the improvement between incorporating the H-MIDAS transformed
USSI over the equally weighted USSI is statistical significant, we perform the GW test
and report the results in Table A5. Notice, that all of the p-values are smaller than 10%,
irrespective of the forecast horizon signifying the importance of using the appropriate
averaging method to convert high frequency data to lower frequency.
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Table A2: Forecasting Performance at Different Horizons
MSFE SDFE MAFE Pseudo R2

Panel A: 1 Days Ahead
RW 0.0069 0.0830 0.0578 0.9036
HAR 0.0068 0.0828 0.0576 0.9041
HARX 0.0069 0.0830 0.0574 0.9036
AHARX 0.0069 0.0833 0.0576 0.9028
LHARX 0.0068 0.0826 0.0570 0.9040
MAHARX 0.0067 0.0817 0.0567 0.9064
HARXa 0.0069 0.0831 0.0575 0.9032
AHARXa 0.0070 0.0836 0.0576 0.9021
LHARXa 0.0069 0.0829 0.0584 0.9037
MAHARXa 0.0067 0.0817 0.0567 0.9064

Panel B: 5 Days Ahead
RW 0.0294 0.1715 0.1202 0.5895
HAR 0.0280 0.1674 0.1206 0.6085
HARX 0.0264 0.1626 0.1195 0.6310
AHARX 0.0273 0.1652 0.1201 0.6191
LHARX 0.0272 0.1648 0.1153 0.6109
MAHARX 0.0256 0.1600 0.1166 0.6428
HARXa 0.0266 0.1631 0.1202 0.6284
AHARXa 0.0275 0.1658 0.1200 0.6160
LHARXa 0.0251 0.1585 0.1121 0.6420
MAHARXa 0.0258 0.1606 0.1173 0.6396

Panel C: 10 Days Ahead
RW 0.0452 0.2127 0.1490 0.3705
HAR 0.0434 0.2084 0.1562 0.3950
HARX 0.0373 0.1930 0.1470 0.4801
AHARX 0.0423 0.2057 0.1548 0.4090
LHARX 0.0394 0.1986 0.1388 0.4354
MAHARX 0.0364 0.1907 0.1460 0.4923
HARXa 0.0377 0.1943 0.1491 0.4714
AHARXa 0.0430 0.2073 0.1553 0.3978
LHARXa 0.0367 0.1910 0.1451 0.4847
MAHARXa 0.0368 0.1919 0.1483 0.4844

Panel D: 22 Days Ahead
RW 0.0589 0.2426 0.1758 0.1924
HAR 0.0595 0.2439 0.2007 0.1777
HARX 0.0397 0.1992 0.1543 0.4560
AHARX 0.0435 0.2085 0.1634 0.4032
LHARX 0.0464 0.2155 0.1596 0.3544
MAHARX 0.0383 0.1957 0.1510 0.4750
HARXa 0.0418 0.2045 0.1606 0.4250
AHARXa 0.0457 0.2139 0.1683 0.3704
LHARXa 0.0400 0.1998 0.1540 0.4359
MAHARXa 0.0404 0.2010 0.1573 0.4449

This table reports the out-of-sample results for predicting h-day future realized
variation using the different predictor variables and risk models. The results
are based on the CBOE VIX data spanning from January 7, 2013 to August 21,
2017 (a total of 1,206 observations). We use a rolling window of 600 observa-
tions to estimate the coefficients of the models, and evaluate the out-of-sample
forecast performance at four horizons (h = 1, h = 5, h = 10 and h = 22). Each
panel in the table corresponds to a specific forecast horizon, which varies from
1 day to 22 days. Bold numbers indicate the best performing model by each
criterion at each forecast horizon.
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Table A3: Giacomini-White Test Results
RW HAR HARX AHARX LHARX MAHARX HARX? AHARX? LHARX?

Panel A: 1 Days Ahead
RW - - - - - - - - -
HAR 0.8347 - - - - - - - -
HARX 0.9996 0.7772 - - - - - - -
AHARX 0.7395 0.5903 0.6433 - - - - - -
LHARX 0.8380 0.9806 0.8316 0.6294 - - - - -
MAHARX 0.2058 0.1042 0.0096 0.0798 0.1776 - - - -
HARXa 0.8616 0.5907 0.2733 0.8144 0.6746 0.0044 - - -
AHARXa 0.5429 0.4147 0.4381 0.2018 0.4541 0.0487 0.5492 - -
LHARXa 0.9831 0.8338 0.9753 0.7885 0.8841 0.2482 0.8539 0.6522 -
MAHARXa 0.2059 0.1043 0.0096 0.0798 0.1776 0.6435 0.0044 0.0487 0.2483

Panel B: 5 Days Ahead
RW - - - - - - - - -
HAR 0.4343 - - - - - - - -
HARX 0.2319 0.3853 - - - - - - -
AHARX 0.3108 0.6675 0.5563 - - - - - -
LHARX 0.3241 0.9311 0.5630 0.7905 - - - - -
MAHARX 0.1268 0.1828 0.0413 0.2399 0.3692 - - - -
HARXa 0.2516 0.4273 0.4048 0.6403 0.6149 0.0096 - - -
AHARXa 0.3449 0.7547 0.5042 0.5173 0.8670 0.2252 0.5666 - -
LHARXa 0.0084 0.0156 0.3666 0.1242 0.0817 0.7007 0.3010 0.1058 -
MAHARXa 0.1533 0.2321 0.2331 0.3194 0.4297 0.2649 0.0563 0.2858 0.6126

Panel C: 10 Days Ahead
RW - - - - - - - - -
HAR 0.6465 - - - - - - - -
HARX 0.1902 0.1785 - - - - - - -
AHARX 0.6284 0.8279 0.2220 - - - - - -
LHARX 0.2079 0.5727 0.6008 0.7827 - - - - -
MAHARX 0.1370 0.1215 0.1273 0.1345 0.5013 - - - -
HARXa 0.2185 0.2127 0.3356 0.2517 0.6773 0.0346 - - -
AHARXa 0.7431 0.9679 0.2496 0.5254 0.7153 0.1672 0.2682 - -
LHARXa 0.0065 0.0152 0.4107 0.0815 0.0931 0.5310 0.3284 0.0954 -
MAHARXa 0.1607 0.1510 0.7475 0.1490 0.5701 0.3441 0.1236 0.1745 0.4439

Panel D: 22 Days Ahead
RW - - - - - - - - -
HAR 0.9119 - - - - - - - -
HARX 0.0647 0.0158 - - - - - - -
AHARX 0.1633 0.0729 0.3087 - - - - - -
LHARX 0.1451 0.2107 0.3053 0.6677 - - - - -
MAHARX 0.0510 0.0104 0.0147 0.1911 0.2365 - - - -
HARXa 0.1154 0.0387 0.0799 0.6929 0.5118 0.0110 - - -
AHARXa 0.2483 0.1372 0.1644 0.0482 0.8954 0.1041 0.3769 - -
LHARXa 0.0166 0.0070 0.4202 0.1483 0.0720 0.6269 0.2150 0.0929 -
MAHARXa 0.0864 0.0241 0.5131 0.4593 0.4015 0.0586 0.0169 0.2359 0.3594

The modified Giacomini-White test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row
method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the absolute
forecast error. Corresponding p values for a number of forecasting horizons (h = 1, 5, 10, 22) are reported in Panels A to D,
respectively. Bold numbers indicate the null hypothesis can be rejected at 5% level of significance.

42



Table A4: Forecasting Performance at Different Horizons
MSFE SDFE MAFE Pseudo R2

Panel A: 1 Days Ahead
MAHARXa 0.0067 0.0817 0.0567 0.9064
MAHARX? 0.0047 0.0683 0.0503 0.9348

Panel B: 5 Days Ahead
MAHARXa 0.0258 0.1606 0.1173 0.6396
MAHARX? 0.0244 0.1563 0.1147 0.6589

Panel C: 10 Days Ahead
MAHARXa 0.0368 0.1919 0.1483 0.4844
MAHARX? 0.0353 0.1879 0.1423 0.5080

Panel D: 22 Days Ahead
MAHARXa 0.0404 0.2010 0.1573 0.4449
MAHARX? 0.0378 0.1943 0.1494 0.4830

This table reports the out-of-sample results for predicting h-day future realized
variation between MAHARXa and MAHARX∗. The results are based on the
CBOE VIX data spanning from January 7, 2013 to August 21, 2017 (a total of
1,206 observations). We use a rolling window of 600 observations to estimate
the coefficients of the models, and evaluate the out-of-sample forecast perfor-
mance at four horizons (h = 1, h = 5, h = 10 and h = 22). Each panel in the
table corresponds to a specific forecast horizon, which varies from 1 day to 22
days. Bold numbers indicate the best performing model by each criterion at
each forecast horizon.

Table A5: Giacomini-White Test Results
h = 1 h = 5 h = 10 h = 22

p-value 0.0001 0.0841 0.0014 0.0061

The modified Giacomini-White test (Giacomini and White,
2006) is implemented to test the null hypothesis that
MAHARXa performs equally well as MAHARX∗ in terms of
the absolute forecast error. Corresponding p values for a num-
ber of forecasting horizons (h = 1, 5, 10, 22) are reported in
Panels A to D, respectively. Bold numbers indicate the null
hypothesis can be rejected at 5% level of significance.
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