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Abstract

This is the online appendix for Lehrer and Xie (2020). Six sections are included, which provide
further details on the data collection as well all of the econometric estimators and machine
learning algorithms listed in table 2 of the main text including the newly proposed model
averaging least squares support vector regresssion strategy. The appendix also contains all
formal proofs of the econometric theory, review of related empirical literature focused on how
online reviews influence revenue outcomes, and additional intuition explaining why the hy-
brid strategies yield improvements in forecast accuracy. Most importantly, all of the robust-
ness exercises and additional results that are referenced in Lehrer and Xie (2020) are provided
with a brief discussion. Last, a detailed study illustrates how the hybrid strategy can be used
with a different algorithm to make splits in the tree structure to generate new empirical find-
ings is provided.
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A Review of Popular Machine Learning Tools for Forecast-
ing

Algorithms in machine learning often build forecasting models by a series of data-driven
decisions that optimize what can be learnt from the data to subsequently make predic-
tions. Proponents of machine learning algorithms point to their improved performance
in out of sample forecast exercises and stress the intuition on why they perform well, but
do not consider their small sample or asymptotic properties.

The majority of machine learning tools used for forecasting implicitly assume ho-
moskedastic data and ex ante we would expect their performance to deteriorate with
heteroskedastic data. In this section, we summarize why we make this conjecture with
six alternative strategies. First, estimates from the least absolute selection and shrink-
age operator (Lasso) of Tibshirani (1996) is obtained by minimizing the l1-penalized least
squares criterion. Much research has investigated the model selection performance of the
Lasso and found that it performs well under sparse and homoskedastic regression mod-
els. This result is unsurprising since the criterion involves the unweighted sum of squares
and a penalty to make the model sparse. Thus, with heteroskedastic data and that objec-
tive function it may place more weight on high variance regions at the expense of low
variance areas. Further, as some parameter estimates are shrunk relative to traditional
OLS estimates, some omitted variable bias may arise.

Breiman, Friedman, and Stone (1984) introduced the classification and regression de-
cision trees (CART). A decision tree is a flowchart-like structure in which each internal
node represents a “test” on an attribute, each branch (or tree leaf) represents the outcome
of the test and each leaf node represents a class label (decision taken after computing all
attributes). The paths from root to leaf represents classification rules. In the application
in the paper, we concentrate on the regression tree case, since our predicted outcomes are
real number.

A regression tree (RT) recursively partition data into groups that are as different as
possible and fit the mean response for each group as its prediction. The variable and
splitting point are chosen to reduce the residual sum of squares (SSR) as much as possible
after the split as compared to before the split.1 That is, similar to stepwise regression
the first split is akin to choosing which variable should be first included in the model.
With regression trees, splits can continue within each subgroup until some stopping rule

1As mentioned in the main text, in RT, a node τ contains nτ of observations. Each node can only by split
into two leaves, denoted as τL and τR, each contains subsets of nL and nR observations with nτ = nL + nR.
Define the within-node sum of squares as SSR(τ) = ∑nτ

i (yi − (ȳτ))̄
2, where ȳ(τ) is the mean of those cases.

We split the nτ observations of node τ into τL and τR if the following value reach its global maximum:
∆ = SSR(τ)− SSR(τL)− SSR(τR). Each tree leaf τL or τR can be treated as a new node and continue with
the splitting process. We start from the top of the tree (full sample) and apply the same approach to all
subsequent nodes. Once a tree is constructed, the full sample is split into a number of leaves. Each leaf
contains a subset of the full sample and the accumulation of all leaves is the full sample.
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is reached. This could lead to overfitting and as such, in practice the full trees are pruned
using a cost-complexity criterion. This criterion takes into account the amount of squared
error explained by each sub-tree plus a penalty chosen by cross-validation for the number
of terminal nodes in the sub-tree in an attempt to trade-off tree size and over-fitting.

Forecasts from RT involve calculating the average of the associated observations of the
dependent variable in each leaf calculated and treated as the fitted value of the regression
tree. Hastie, Tibshirani, and Friedman (2009) provide evidence that in practice, predic-
tions from RT have low bias but large variance. This variance arises due to the instability
of RT as very small changes in the observed data can lead to a dramatically different se-
quence of splits, and hence a different prediction. This instability is due to the hierarchical
nature; once a split is made, it is permanent and can never be “unmade” further down in
the tree. Variations of RT have been shown to have better predictive abilities and we now
briefly outline the procedures of two popular approaches known as bagging and random
forest.

Bootstrap aggregating decision trees, or bagging, was proposed by Breiman (1996) to
improve the classification by combining classifications of randomly generated training
sets. Given a standard data set {yi, X i}with i = 1, ..., n, bagging generates B new training
sets {yi, X i}b for b = 1, ..., B, in which each set is a random sample of size n replacement
from the original training set {yi, X i}. By sampling with replacement, some observa-
tions may be repeated and for large n the set {yi, X i}b is expected to have the fraction
(1− 1/e) ≈ 63.2% of the unique examples of {yi, X i}. Each data set will construct one re-
gression tree that is grown deep and not pruned. In a forecasting exercise, we first obtain
forecasts from each tree that similar to RT has a high variance with low bias. The final
forecast takes the equal weight averages of these tree forecasts and by averaging across
trees, the variability of the prediction declines. Much research has found that bagging,
which combines hundreds or thousands of trees, leads to sharp improvements by over a
single RT.

A challenge that bagging faces is that each tree is identically distributed and in the
presence of a single strong predictor in the data set, all bagged trees will select the strong
predictor at the first node of the tree. Thus, all trees will look similar and be correlated.
The bias of bagged trees is identical to the bias of the individual trees but the variance
declines even when trees are correlated as B increases.

To reduce the chance of getting correlated trees, Breiman (2001) developed the random
forest method. Random forest is similar to bagging, as both involve constructing B new
trees with bootstrap samples from the original data set. But for random forest, as each
tree is constructed, we take a random sample (without replacement) of q predictors out
of the total Ktotal (q < Ktotal) predictors before each node is split. This process is repeated
for each node and the default value for q is b1/3Ktotalc. In our application, we fixed q
at specific numbers of explanatory variables to consider. Note that if q = Ktotal, random
forest is equivalent to bagging. Eventually, we end up with B trees and the final random
forecast estimate is calculated as the simple average of forecasts from each tree.
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Research has found that random forests do a good job at forecasting when the number
of relevant variables in the set K is large. After all, if there are many irrelevant variables
the chance of a split on something relevant becomes low. Yet, by randomly selecting
predictors they produce trees with much lower degrees of correlation than bagging.

In the next section of the appendix, we consider four other methods including boosted
regression trees that use a sequential process of fitting regression trees (without bootstrap
sampling) to determine the weights of each tree in the forest. This relaxes the equal weight
assumption implicit in the final forecast of random forest and bagging, but the method
still relies on homoskedasticity in determining the initial splits at each node. We also
describe in greater detail strategies based on Bayesian adaptive regression tree require
researchers to assign priors including a functional form of the residual. A new strategy in
that branch of the literature does account for heteroskedasticity.

We also describe in subsequent sections of the Appendix, the use (and discuss the
empirical performance) of algorithms that use linear regression in the terminal leaves in-
stead of estimating a local constant model. These methods include strategies that build
tress using greedy algorithms as well as alternatives such as the M5’ model tree method of
Quinlan (1992) with an extension that allows for linear regression functions at the nodes
and the scalable linear regression tree (SECRET) algorithm of Dobra and Gehrke (2002).
Last, for space considerations, we did not consider two other methods developed in the
machine learning literature. Artificial neural networks and multivariate adaptive regres-
sion splines also have algorithms that make decisions assuming homoskedasticity.2 In
summary, heteroskedastic data is not considered with many popular tools in the machine
learning literature and its presence may bias the algorithms to operate in regions with
higher variance at the expense of regions of low variance.

B Review of Alternative Machine Learning Strategies

In the previous section, we discussed the most commonly employed tree structured mod-
eling techniques that recursively partition a data set into relatively homogeneous sub-
groups in order to make more accurate predictions on future observations. Yet, as de-
scribed in the main text the CART induction algorithm of Breiman, Friedman, and Stone
(1984) has received critiques in the machine learning literature related to greediness, split
selection bias and the simplistic formation of prediction rules in the terminal leaf nodes.
Our main text adds to this literature by first pointing out how heteroskedastic data results
in split selection bias and by proposing an improvement that generalizes how prediction
rules are made in the terminal leaves. In this section of the Appendix, we discuss prior

2Briefly, with artificial neural networks the weights for each node that correspond to different explana-
tory variables are estimated by minimizing the residual sum of squares; this approach is called back-
propagation. With multivariate adaptive regression splines, terms are added to the regression model if
they give the largest reduction in the residual sum of squares and to prevent over-fitting a backward dele-
tion process is used to make the model sparse.
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proposed algorithms developed in the machine learning literature to address the above
three critiques. That said, we would like to reinforce that the addition of model averaging
to the terminal leaves is new to this literature and in our application we witnessed large
gains in forecast accuracy relative to BART and boosting and similar gains but with low
additional computational costs relative to Bayesian approaches that explicitly consider
heteroskedasticity. Further, in the next section of the appendix, we briefly show that our
hybrid strategy also yields gains with these more computationally intensive algorithms.

B.1 Boosting Tree

Boosting provides a popular alternative ensemble method to random forests. Boosting is
also based on multiple regression trees and no linearity assumptions are made about the
DGP. To motivate boosting strategies, recall that random forests use a series of discontin-
uous flat surfaces forming an overall rough shape to approximate complex DGPs. The
effectiveness of this strategy relies on interpolation allowing the rough shape to capture
highly local features of the outcome data in a robust manner. Random forest predic-
tions can substantially reduce the bias in fitted values relative to traditional econometric
approaches due to their flexible modeling. This flexibility does come with a risk of over-
fitting the data since none of the trees in the forest are pruned.

Boosting is an alternative machine learning strategy developed to accommodate highly
local features of the data and does not engage in overfitting. Boosting works in a sequen-
tial tree building manner that re-weights the residuals from the prediction of the first
K − 1 trees to create the Kth tree. Intuitively, this method produces a very accurate pre-
diction rule by combining rough and moderately inaccurate rules of thumb. The reason
why overfitting is unlikely is that boosted trees are typically grown small. The maximum
depth of variable interactions is often set to be less than 4 or 5. With each individual
tree growing to a low depth ensures that it cannot explain all of the variation in the data,
and thereby allows the new trees in the sequence to “catch” the patterns that the previ-
ous ones missed. Put simply, observations with large residuals in the K− 1th tree receive
more weight in the construction of the Kth tree. The idea of boosting dates back to Valiant
(1984) and the first algorithm was developed in Schapire (1990). In our application, we
employ the gradient boost algorithm of Izenman (2013) to build boosted trees.

More formally, boosting is a way of fitting an additive expansion in a set of elementary
basis functions. A basis function expansion takes the form

f (X) =
K

∑
k=1

δkb(X; γk),

where δk, k = 1, 2, ..., K are the expansion coefficients, and b(X; γ) ∈ R are usually simple
functions of the multivariate argument X, characterized by a set of parameters γ. Typi-
cally these models are fit by minimizing a loss function averaged over the training data,
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such as the squared-error,

min
{δk,γk}K

1

n

∑
i=1

L

(
yi,

K

∑
k=1

δkb(xi; γk)

)
. (A1)

Forward stagewise modeling approximates the solution to (A1) by sequentially adding
new basis functions to the expansion without adjusting the parameters and coefficients
of those that have already been added. This is outlined in the following algorithm:

Algorithm A.1.1: Forward Stagewise Boosting

1. Initialize f0(X) = 0.

2. For k = 1 to K:

(a) Compute

(βk, γk) = arg min
β,γ

n

∑
i=1

L
(
yi, fk−1(xi) + δkb(xi; γ)

)
.

(b) Set fk(X) = fk−1(X) + δkb(X; γk).

At each new tree k, one solves for the optimal basis function b(X; γk) and correspond-
ing coefficient δk to add to the current expansion fk−1(X). This produces fk(X), and the
process is repeated. Previously added terms are not modified.

For squared-error loss
L
(
y, f (X)

)
=
(
y− f (X)

)2, (A2)

one has

L
(
yi, fk−1(xi) + δb(xi, γ)

)
=

(
yi − fk−1(xi)− δb(xi; γ)

)2

=
(
rik − δb(xi; γ)

)2,

where rik = yi − fk−1(xi) is simply the residual of the current model on the ith observa-
tion. Thus, for squared-error loss, the term δkb(xi; γk) that best fits the current residuals is
added to the expansion at each step.

B.1.1 Gradient Tree Boosting

Regression trees partition the space of all joint predictor variable values into disjoint re-
gions µj, j = 1, 2, ..., J, as represented by the terminal nodes of the tree. A local constant
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model is then estimated to generate a prediction in each terminal node. A tree can be
formally expressed as

T(X, Θ) =
J

∑
j=1

γjI(X ∈ µj),

with parameters Θ = {µj, γj}J
j=1, where γj is the forecast in terminal node j. As with

regression trees, γj is simply the mean outcome of all observations in j. Formally, the
parameters are found by minimizing the risk

Θ̂ = arg min
Θ

J

∑
j=1

∑
xi∈µj

L(yi, γj).

The boosted tree model is a sum of all trees,

fk(X) =
K

∑
k=1

T(X; Θk)

induced in the forward stagewise manner (Algorithm A.1.1) described in the previous
subsection. At each step in the forward stagewise procedure one must solve

Θ̂m = arg min
Θm

n

∑
i=1

L
(
yi, fk−1(xi) + T(xi; Θk)

)
. (A3)

for the region set and constants Θk = {µjk, γjk}
Jk
1 of the next tree, given the current model

fk−1(X).

Given the regions µjk, finding the optimal constants γjk in each region (i.e. leaf of the
boosted tree) is typically straightforward:

γ̂jk = arg min
Θk

n

∑
i=1

L
(
yi, fk−1(xi) + γjk

)
.

Finding the regions is difficult, particularly for a single tree. However, with squared-error
loss, the solution is straightforward. It is simply the regression tree that best predicts the
current residuals yi − fk−1(xi), and γ̂jk is the mean of these residuals in each correspond-
ing region.

Fast approximate algorithms for solving (A3) with any differentiable loss criterion can
be derived by analogy to numerical optimization.

f̂ = arg min
f

L( f ),

where the “parameters” f ∈ Rn are the values of the approximating function f (xi) at
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each of the n data points xi. The solution is a sum of component vectors

f K =
K

∑
k=0

hk, hk ∈ Rn,

where f 0 = h0 is the initial guess, and each successive f k is induced based on the current
parameter vector f k−1. Each increment vector hk = −ρkgk, where ρk is a scalar and
gk ∈ Rn is the gradient of L( f ) evaluated at f = f k−1. The components of the gradient gk
are

gik = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fk−1

.

The step length ρk is the solution to

ρk = arg min
ρ

L( f k−1 − ρgk).

The current solution is then updated

f k = f k−1 − ρmgk

and the process repeated at the next iteration.

The following Algorithm A.1.2 summarizes the steps involved in the generic gradi-
ent tree-boosting algorithm for continuous outcomes. Specific algorithms can also be
obtained by inserting different loss criteria L(y, f (X)). Notice that the first line of algo-
rithm A.1.2 initializes the tree to be a global optimal constant model, which is just a single
terminal node tree. The components of the negative gradient that is next computed as de-
scribed in line 2(a) of algorithm A.1.2 are referred to as generalized or pseudo residuals,
r. The procedure is more computationally expensive than bagging and generates shorter
trees. The rationale is that allows new trees in the sequence can correct patterns that the
previous trees missed, and this would not be possible if the trees were grown to be deep.
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Algorithm A.1.2: Gradient Tree Boosting Algorithm

1. Initialize f0(X) = arg min
γ

∑n
i=1 L(yi, γ).

2. For m = 1 to K:

(a) For i = 1, 2, ..., n compute

rik = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f= fk−1

.

(b) Fit a regression tree to the targets rik giving terminal regions µjk,
j = 1, 2, ..., Jk.

(c) For j = 1, 2, ..., Jk compute

γjk = arg min
γ

∑
xi∈µjk

L(yi, fk−1(xi) + γ).

(d) Update fk(X) = fk−1(X) + ∑Jk
j=1 γjkI(X ∈ µjk).

3. Output f̂ (X) = fK(X).

The number of trees grown is chosen via cross-validation and one can also use bagging
samples or the full sample to conduct boosting. As noted in the prior section, each tree is
built by minimizing the residual sum of squares and will face the same negative impact
as heteroskedasticity. Each new regression tree is fit to the residuals of the predictions
from the weighted sum of the previous trees and may correct for some heteroskedasticity.
Yet, the short depth of these trees suggest that the consequences of heteroskedastic data
can be severe since all the initial splits in boosted regression trees will be in high variance
areas. Thus, the consequences of heteroskedastic data for boosting is that it may not
consider potentially beneficial splits in low variance areas due to the objective function in
the algorithm.

B.2 Bayesian Approaches: BART, BARTBMA and H-BART

A second and increasingly popular alternative to random forest is Bayesian additive
regression trees (BART) developed by Chipman, George, and McCulloch (2010). The
popularity of BART arises from the possibility of undertaking statistical inference. This
Bayesian approach has the flavor of a semiparametric model in econometrics and models
the relationship between the outcome variable and explanatory variables as nonparamet-
ric, however a parametric residual enters the equation in an additively separable manner.
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In this subsection, we review the conventional BART, BART under Bayesian model
averaging (BMA) by Hernández, Raftery, Pennington, and Parnell (2018), and the het-
eroskedastic BART by Pratola, Chipman, George, and McCulloch (2019), in details.

B.2.1 Likelihood function for BART

Let’s first introduce some notations, y = [y1, y2, . . . , yn]T, X = [x1, x2, . . . , xn]T and xi =
[xi,1, xi,2, . . . , xi,p]

T for i = 1, 2, . . . , n. Then the sum-of-trees model can be more explicitly
expressed as

yi =
m

∑
j=1

g
(
xi; Tj, Mj

)
+ εi, εi ∼ N

(
0, σ2

)
(A4)

where m is the number of trees, for each binary regression tree Tj and its associated ter-
minal node parameters Mj = [µ1j, µ2j, . . . , µng

j j]
T with ng

j as the number of leaf nodes in

Tj, g
(
xi; Tj, Mj

)
is the function which assigns µij ∈ Mj to xi. From (A4), the BART model

can be rewritten as

y|X, T ,M, σ2 ∼ N(
m

∑
j=1

JjMj, σ2I) (A5)

where T = [T1, T2, . . . , Tm], M = [MT
1 , MT

2 , . . . , MT
m], Jj is a n× ng

j binary matrix whose
(i, k) element denotes the inclusion of observation i = 1, 2, . . . , n in terminal node i =
1, . . . , ng

j of tree Tj.

Then from (A5), the likelihood function of BART model can be specified as

p
(

y|X, T ,M, σ2
)
=

1
(2π)n/2 exp


(

y−∑m
j=1 JjMj

)T (
y−∑m

j=1 JjMj

)
2σ2

 (A6)

where the parameters in BART model (A5) is defined as (T ,M, σ2). We will specify the
prior distribution for the parameters.

B.2.2 Priors for BART

The assumption of the prior distribution for (T ,M, σ2) is that {(T1, M1) , . . . , (Tm, Mm)}
and σ are independent and that (T1, M1) , . . . , (Tm, Mm) are independent of each other.
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Then, the prior distribution can be written as

p [T ,M, σ] = p [(T1, M1) , . . . , (Tm, Mm) , σ] = p [(T1, M1) , . . . , (Tm, Mm)] p(σ)

=

[
m

∏
j=1

p
(
Tj, Mj

)]
p(σ) =

[
m

∏
j=1

p
(

Mj|Tj
)

p
(
Tj
)]

p(σ)

=

 m

∏
j=1


ng

j

∏
i=1

p
(
µij|Tj

) p
(
Tj
) p(σ).

(A7)

For the entire tree Tj, j = 1, 2, . . . , m, the prior is specified as

P(Tj) = ∏
η j∈H j

terminals

(
1−PSPLIT (η j)

)
∏

η j∈H j
internals

PSPLIT (η j) ∏
η j∈H j

internals

PRULE(η
j) (A8)

where η j denotes the node (internal node and terminal node), H j
terminals denotes the set

of terminal nodes and H j
internals denotes the internal nodes of Tj.

PSPLIT (η j) is the probability of splitting on a given node

PSPLIT (η j) =
α(

1 + dη j

)−β
(A9)

where dη j is the depth (number of parent generations) of node η j, α ∈ (0, 1) and β ∈
[0, ∞). Following Chipman, George, and McCulloch (2010), the default values are α = .95
and β = 2 in (A8). With this kind of prior, trees with 1, 2, 3, 4, and ≥ 5 terminal nodes
receive prior probability of 0.05, 0.55, 0.28, 0.09, and 0.03, respectively which puts most
probability on tree sizes of 2 or 3, trees. PRULE(η

j) is the probability of splitting rule at
internal node η j which consists of two parts

PRULE(η
j) = Psx(η

j)Psxp(η
j) (A10)

where Psx(η j) is the distribution of split variable at η j and Psxp(η j) is the distribution
of splitting points conditional on selected split variable at η j. Chipman, George, and
McCulloch (2010) proposed uniform distributions for Psx(η j) and Psxp(η j), then

PRULE(η
j) =

1

pη j

sx

× 1

pη j

sxp

(A11)

where pη j

sx and the number of available splitting variables at η j and pη j

sxp is the number of
unique splitting points at η j.
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In our exercises, we set the tree prior P(Tj) in our paper as in (A8) with α = 0.95,
β = 2 and PRULE(η

j) as in (A11). We tried other values and find that the results are more
sensitive to α than β.

Chipman, George, and McCulloch (2010) proposed to use conjugate normal prior for
µij|Tj

µij|Tj ∼ N(µµ, σ2
µ), (A12)

and then the induced prior of the condition expectation of yi, E[yi|xi, T ,M] can be written
as

E[yi|xi, T ,M] ∼ N(mµµ, mσ2
µ). (A13)

It is highly probable that E[yi|xi, T ,M] is between ymin and ymax, the observed minimum
and maximum of yi in the data. Chipman, George, and McCulloch (2010) proposed to
choose µµ and σµ so that N

(
mµµ, mσ2

µ

)
assigns substantial probability to the interval

(ymin, ymax). This can be conveniently done by choosing

mµµ − k
√

mσµ = ymin

mµµ + k
√

mσµ = ymax

for some pre-selected value of k. The solution is as follows

µµ =
ymax + ymin

2m
, σµ =

ymax − ymin

2k
√

m
,

then (A12) can be rewritten as

µij|Tj ∼ N

(
ymax + ymin

2m
,
(

ymax − ymin

2k
√

m

)2
)

. (A14)

It can be shown from (A14) that

P [ymin < E[yi|xi, T ,M] < ymax] = P

[
−k <

E[yi|xi, T ,M]−mµµ√
mσµ

< k

]
= 2Φ(k)− 1

(A15)
where Φ(k) is the CDF of standard normal distribution. For example, k = 2, k = 5 and
k = 10 would yield 95%, 99% and 100% prior probability that E[yi|xi, T ,M] is in the
interval (ymin, ymax) respectively. Following Chipman, George, and McCulloch (2010),
we choose k = 2 in our paper. We carried out exercises with both k = 5 and k = 10, the
results are qualitatively unchanged.

Chipman, George, and McCulloch (2010) also proposed to use a conjugate prior, the

12



inverse chi-square distribution for σ

σ2 ∼ νλ

χ2
ν

, (A16)

where a data-informed prior approach is used to guide the specification of ν and λ. In
this case, it aims to assign substantial probability to the entire region of plausible values
of σ while avoiding over-concentration and over-dispersion. Given the value of ν ≥ 3,
the value of λ is determined by

P(σ < σ̂) = q (A17)

where q is some pre-specified probability such as 75%, 90% or 99%, σ̂ is taken as the
sample standard deviation of y or the residual standard deviation from a least squares
linear regression of y on the original X. Then the prior of σ is determined by ν and q. We
follow Chipman, George, and McCulloch (2010) and set ν = 2 and q = 0.9 in our paper.

B.2.3 Posterior Distribution for BART

The prior distribution would induce the posterior distribution

P [(T1, M1) , . . . , (Tm, Mm) , σ|X, y]
∝ p [Y| (T1, M1) , . . . , (Tm, Mm) , σ]× p [(T1, M1) , . . . , (Tm, Mm) , σ]

(A18)

which can be simplified into two major posterior draws using Gibbs sampling. First,
draw m successive

P
[(

Tj, Mj
)
|T−j, M−j, y, σ

]
(A19)

for j = 1, . . . , m, where T−j and M−j consist of all the tree structures and terminal nodes
except for the jth tree structure and terminal node; then, draw

p [σ| (T1, M1) , . . . , (Tm, Mm) , y] (A20)

from IG
( v+n

2 ,
{

vλ + ∑[y− f (x)]2
}

/2
)
. This is the tree generating process by MCMC.

In this paper, we ran 100 burn-in draws and kept 1000 subsequent draws to represent
the posterior.

B.2.4 Bayesian Additive Regression Trees using Bayesian Model Averaging (BART-
BMA)

The likelihood function of BART-BMA is the same as BART in (A6). Following Hernández,
Raftery, Pennington, and Parnell (2018), the tree prior and the σ prior are given by (A8)
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and (A16) with ν = 3, q = 0.9. But the prior for µij is now specified as

µij|Tj ∼ N

(
ymax + ymin

2m
,
(ymax − ymin)

2 σ2

a

)
. (A21)

where a = 3 in our paper, which is the same as Hernández, Raftery, Pennington, and
Parnell (2018).

The posterior likelihood of BART-BMA can be written as

P [T ,M, σ|X, y]
∝ P [y|X, T ,M, σ]P [T ,M, σ]
= P [y|X, T ,M, σ]P [M|T , σ]P [σ|T ]P [T ]

(A22)

where P [M|T , σ] is specified by using (A21). By changing the prior of µij from (A14)
to (A21), we can integrate out the parameters M and σ from (A22) to get the marginal
likelihood of y conditional on X and a set of trees T

P [y|X, T ]
=
∫

P [y,M, σ|X, T ] dMdσ
= P [T ]

∫
P [y|X, T ,M, σ]P [M|T , σ]P [σ|T ] dMdσ.

(A23)

From (A23), the BIC for a set of trees T is

BICT = −2 log P [y|X, T ] + B log n (A24)

where B is the number of parameters in T . Instead of MCMC, BART-BMA uses a greedy
tree growing algorithm (similar to classical CART) to generate T with the value of BIC
into Occam’s Window.

For grid search method, each variable xp in data set X is split into grid gridsize + 1
equally spaced partitions within the range of xp and each partition value is then used
as a potential split point. Increasing gridsize finds better solutions but makes the al-
gorithm slower. Hernández, Raftery, Pennington, and Parnell (2018) proposed to select
gridsize = 15 since it struck a good balance and gave good performance in most cases.
Trees are greedily grown using the best percentage (denoted as “numcp”) of the total
splitting rules based on their residual squared error. Following Hernández, Raftery, Pen-
nington, and Parnell (2018), numcp = 20%.

As it is not possible to perform an exhaustive search of the model space especially
when p is large, Hernández, Raftery, Pennington, and Parnell (2018) proposed to use
a greedy and efficient version of BMA called Occam’s window (Madigan and Raftery,
1994). Here only the models which fall within Occam’s Window are selected using

BICk − arg min
l∈`

(BICl) ≤ log(o) (A25)
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where ` indexes the sets of trees accepted into Occam’s Window (the set of sum of trees
models with the highest posterior probabilities to date).

In our paper, we set o = 1000 following Hernández, Raftery, Pennington, and Par-
nell (2018). Regarding the number of trees, Hernández, Raftery, Pennington, and Parnell
(2018) claimed that m = 5 generally works well. However, empirical results under m = 5
are much worse than m = 20 in our exercises. In this paper, we set m = 20.

B.2.5 Heteroskedastic BART Via Multiplicative Regression Trees (HBART)

The HBART model can be specified as follows

yi =
m

∑
j=1

g
(
xi; Tj, Mj

)
+ s (xi) zi, zi ∼ N (0, 1) (A26)

with s (xi) specified as

s2(xi) =
m′

∏
l=1

h
(
xi|T′l , M′l

)
(A27)

where Tj, Mj are the same as in (A4), T′l encodes the structure of the l-th tree for the
variance and M′l = [s2

1l, s2
2l, . . . , s2

nh
l l
]T with nh

l as the number of leaf nodes in T′l .

The prior for HBART is specified as below

P
[
T ,M, T ′,M′, σ

]
= P

[
(T1, M1) , . . . , (Tm, Mm) ,

(
T′1, M′1

)
, . . . ,

(
T′m′ , M′m′

)
, σ
]

= P [(T1, M1) , . . . , (Tm, Mm)]P
[(

T′1, M′1
)

, . . . ,
(
T′m′ , M′m′

)]
P(σ)

=

[
m

∏
j=1

P
(
Tj, Mj

)] [ m′

∏
l=1

P
(
T′l , M′l

)]
P(σ)

=

[
m

∏
j=1

P
(

Mj|Tj
)

P
(
Tj
)] [ m′

∏
l=1

P
(

M′l |T′l
)

P
(
T′l
)]

P(σ)

=

 m

∏
j=1


ng

j

∏
i=1

P
(
µij|Tj

)P
(
Tj
) m′

∏
l=1


nh

l

∏
k=1

P
(

s2
kl|T′l

)P
(
T′l
)P(σ).

(A28)

Following Pratola, Chipman, George, and McCulloch (2019), the priors P[Tj] and
P[µij|Tj] are the same as in BART model. The prior of T′l , P[T′l ] is also specified the same
as in (A8). For the prior of s2

kl, Pratola, Chipman, George, and McCulloch (2019) specified
it as

s2
kl|T′l ∼

ν′λ′

χ2
ν′

, (A29)
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then from (A27) and (A29), the prior of s2(xi) is

s2(xi) ∼
m′

∏
l=1

s2
l (A30)

with s2
l ∼

ν′λ′

χ2
ν′

, i.i.d. Pratola, Chipman, George, and McCulloch (2019) proposed to

choose a prior in the heteroskedastic model to match the prior in the homoskedastic
case by matching the prior means. It can be shown that E

[
σ2] = νλ

ν−2 , and E
[
s(xi)

2] =
∏m′

l=1 E
[
s2

l
]
= λm′

(
ν′

ν′−2

)m′
. Then ν′ and λ′ can be determined by separately matching

the ” λ piece” and the ”ν piece” such as λ′ = λ
1

m′ , ν′ = 2/
(

1−
(
1− 2

ν

)1/m′
)

.

Following Pratola, Chipman, George, and McCulloch (2019), in our paper, we set ν =
10 and λ to be the sample variance of y to specify the ν′ and λ′. And we also set m = 200
and m′ = 40. We ran 100 burn-in draws and kept 1000 subsequent draws to represent the
posterior.

B.3 Linear Regression Tree Algorithms

All decision tree algorithms discussed above, base their forecasts on a set of piecewise
local constant model. In this subsection, we first describe our implementation of model
trees that estimate linear models in the leaf nodes. Numerous researchers in machine
learning have developed algorithms3 that estimate regression models in the leaf nodes
to not just aid in prediction, but also simplify the tree model structure. That is, these
researchers often suggest that the gains in prediction from using a piecewise linear model
could allow one to grow shorter trees that are more parsimonious. Not surprisingly, ex
ante from an econometrics perspective the success of these linear tree algorithms clearly
depend on both the source and amount of heterogeneity in the underlying data.

Perhaps the best known of the linear regression tree algorithms is the M5 algorithm
of Quinlan (1992) that was further clarified in the M5’ algorithm of Wang and Witten
(1997). The M5 algorithm builds subgroups using the same algorithm as RT (Breiman,
Friedman, and Stone, 1984), but a multiple regression models is estimated in the terminal
node. The model in each leaf only contains the independent variables encountered in
split rules in the leaf node’s sub-tree and are simplified to reduce a multiplicative factor
to inflate estimated error.4 In our application, we do not directly consider M5 but consider

3See Quinlan (1992), Chaudhuri, Lo, Loh, and Yang (1995), Kim and Loh (2003), Vens and Blockeel
(2006), among others

4Note, we did not consider the extension by Torgo (1997) that undertakes non-parametric kernel regres-
sion in the terminal nodes since there are large computational costs. Our model averaging approach can
be viewed as an approximation to the kernel regression and is easier to carry out since it involves simply
estimating a suite of linear regression models.
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two strategies that use RT to create subgroups subject to the restriction that each terminal
node contains at least as many observations as the total number of explanatory variables
included in a naive model in each leaf. This naive model is then estimated either by OLS
or the LASSO and allows all the coefficients to vary across the terminal leaves.

We additionally examined the performance of the M5’ model tree that uses a different
criteria to construct splits in the tree. Splits are based on minimizing the intra-subset
variation in the output values down each branch. In each node, the standard deviation
of the output values for the examples reaching a node is taken as a measure of the error
of this node and calculating the expected reduction in error as a result of testing each
attribute and all possible split values. The attribute that maximizes the expected error
reduction is chosen. The standard deviation reduction (SDR) is calculated by

SDR = sd(S)−∑
i

sd(Si)× |Si|/|S|,

where S is the set of examples that reach the node and Sis are the sets that result from
splitting the node according to the chosen attribute (in case of multiple split). As usual,
the splitting process will terminate if the output values of all the instances that reach the
node vary only slightly or only a few instances remain.

Similar to M5 once the tree has been grown, M5’ estimates a multivariate linear model
in each tree leaf that only includes variables that were used in the subtree of this node.
Thus, the M5’ model tree is also analogous to using piecewise linear functions in each
leaf.

A different algorithm that applies linear regression in the terminal nodes developed
by Dobra and Gehrke (2002) has been named SECRET for Scalable EM and Classification
based Regression Tree. SECRET differs from M5 and M5’ in how terminal leaves are
constructed. Tree nodes are split in a two-stage process that first uses the EM algorithm
to cluster observations and quadratic discriminant analysis is then used to identify split
points within the clusters.

Unlike linear discriminant analysis, quadratic discriminant analysis does not assume
homoskedastic data. However, quadratic discriminant analysis assumes that outcomes
for each class identified by the split point is normally distributed. Prior work (e.g. Clarke,
Lachenbruch, and Broffitt (1979)) has found that quadratic discriminant analysis performs
poorly at determining split points when the distributions are highly skewed. By relaxing
the box office budget condition it would not be surprising that the raw social media vol-
ume data is highly skewed (most films attract little attention) and as such in our applica-
tion we would anticipate that SECRET would split in the wrong locations.

For completeness, the estimation algorithm for SECRET is presented below:
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Algorithm: Scalable Linear Regression Tree (SECRET)

1. normalize datapoints to unitary sphere

2. find two Gaussian clusters in regressor–output space (EM)

3. label datapoints based on closeness to these clusters

4. for each split attribute, find best split point and determine its gini gain

5. let X be the attribute with the greatest gini gain and Q the correspond-
ing best split predicate set

6. For one split S, partition data D into D1 and D2 based on Q and label
node S with split attribute X

7. create children nodes S1, S2 of S and build leaves (S1, D1) (S2, D2)

8. Repeat steps 6-7 until stopping rule is satisfied

Once the tree has been constructed, we find the best linear regressor that fits the train-
ing data for each leaf. Similar to M5’, SECRET searches through the original dataset and
identify the subset that falls into each leaf. A simple regression model is formed with
these datapoints and solved.

Returning to heteroskedastic data, the main differences in the splitting criteria be-
tween RT and M5 is the use of variance as the splitting criteria versus standard deviation
reduction (SDR). Yet, the consequence of heteroskedastic data being biased to regions of
the data are similar. RT and M5 and M5’ also differ in the mechanism to estimate the leaf
value, but as we discuss in the next section of the Appendix, this mechanism is nested
within our hybrid approach. We will demonstrate hybrid versions of M5’ outperform
M5’ in forecast accuracy with heteroskedastic data below.

Table A1 provides a list of the statistical software packages we use and their online
source for many of the algorithms described above. Each of the methods described above
that are not listed in the table are available in many platforms and in general we used
either Matlab or R implementation of the respective algorithm.

B.3.1 Additional Comments on the Relative Performance of Linear Regression Tree
Algorithms

In Table A2, we compare the proposed MAB and MARF (with 15 variables only) with the
four linear regression tree algorithms described in the preceding section. Note that for
each of the above algorithms, we conduct bagging and random forest (with 15 variables)
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Table A1: Description of Machine Learning Packages

Method Package Description
RT Standard fitrtree package in MATLAB.
BAG,RF Standard TreeBagger package in MATLAB.
BOOST Standard fitrensemble package in MATLAB.
BART BART package by Robert McCulloch, Rodney Sparapani, Robert Gramacy,

Charles Spanbauer, Matthew Pratola, Martyn Plummer, Nicky Best, Kate Cowles,
and Karen Vines. Package is available in CRAN.

BARTBMA bartBMAnew package by Eoghan O’Neill
https://github.com/EoghanONeill/bartBMAnew

HBART rbart package by Robert McCulloch, Matthew Pratola, and Hugh Chipman
Package is available in CRAN.

M5’ M5PrimeLab package by Gints Jekabsons.
http://www.cs.rtu.lv/jekabsons/

SECRET SECRET package by Alin Dobra and Johannes Gehrke.
http://himalaya-tools.sourceforge.net/Secret/

SVR Standard fitrsvm package in MATLAB.
SVRLS LS-SVMlab package by K. De Brabanter, P. Karsmakers, F. Ojeda, and C. Alzate,

J. De Brabanter, K. Pelckmans, B. De Moor,J. Vandewalle, J.A.K. Suykens,
http://www.esat.kuleuven.be/sista/lssvmlab/

in our estimation. Therefore, methods (i) and (ii) can be regarded as a type of special
bagging and random forest with pruned trees. Recall that using either OLS or Lasso to
estimate the model in the terminal node requires that the sample size must be greater
than the number of explanatory variables in the model. In contrast, MAB and MARF are
more flexible since we can adjust the total number of variables within each model based
on the number of observations that fall within each terminal node.

Estimation results that correspond to our main exercise are presented in Table A2. In
all cases, our results indicate that MAB has the best performance. In general, the more
naive linear regression tree algorithms display quite poor performance. However, we find
that Lasso based methods outperform the OLS based methods, since the latter ignores
subsample model uncertainty. The performance of M5’ method is similar to the Lasso
based naive bagging.

Last, SECRET is designed for large datasets and as discussed in the preceding section
the transformation of regression to classification problem crucially depends on the use of
two Gaussian clusters. Given that our data contains numerous variables that are highly
skewed, it is not a surprise that SECRET performs quite poorly.

B.4 Comparing Conventional M5’ Estimators with Model Averaging
M5’ Hybrids

In this subsection, we demonstrate the wider applicability of our proposed hybrid strat-
egy and examine if combing model averaging with M5’ methods can lead to improve-
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Table A2: Comparing Our Hybrid Tree Approaches with Linear Regression Tree Algo-
rithms Described in Section B.2

nE NBOLS NRFOLS NBLA NRFLA BAGM5′ RFM5′ SECRET MAB MARF Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.6609 1.7734 0.8750 0.8274 0.7099 0.6902 0.8147 0.5066 0.5356 1.0000
20 2.2955 2.3302 0.8248 0.7881 0.8705 0.8352 0.9058 0.7315 0.7787 1.0000
30 2.7054 2.7654 0.8040 0.7675 0.9789 0.9292 1.0270 0.7531 0.8694 1.0000
40 2.9108 3.0032 0.7997 0.7572 1.0425 1.0171 1.0134 0.9145 1.0348 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.9289 0.9478 0.9508 0.9302 0.7460 0.7543 0.8324 0.6232 0.6742 1.0000
20 1.0748 1.0820 0.9460 0.9197 0.7922 0.7933 0.8975 0.6955 0.7495 1.0000
30 1.1631 1.1735 0.9497 0.9235 0.8177 0.8223 0.9785 0.7042 0.7733 1.0000
40 1.2215 1.2430 0.9573 0.9318 0.8399 0.8466 10469 0.7625 0.8157 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 2.8963 2.8966 1.9840 1.9815 0.8805 0.9579 0.9575 0.7307 0.9168 1.0000
20 3.6710 3.6283 3.2619 3.2311 0.9598 1.0610 0.9649 0.7009 1.0564 1.0000
30 5.0171 5.1724 2.8294 2.8132 1.0378 1.1442 0.9576 0.7494 1.1702 1.0000
40 7.6604 7.9057 2.8138 2.7831 1.0467 1.1406 1.0706 0.8626 1.1832 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2420 1.2274 1.5719 1.5678 0.8536 0.9064 0.9572 0.7461 0.9098 1.0000
20 1.3818 1.3737 1.6626 1.6456 0.8827 0.9384 1.0854 0.7564 0.9313 1.0000
30 1.6283 1.6482 1.6359 1.6219 0.9103 0.9620 0.9003 0.7954 0.9722 1.0000
40 2.0066 2.0142 1.6187 1.6116 0.9307 0.9754 1.0419 0.8211 0.9805 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries
provide the ratio of the degree of the respective forecast error metric of the estimator using specific estimation
approach denoted in the column relative to results using the HRCp method presented in the last column. The
benchmark is identical to the main paper to facilitate further comparisons. The subscript in MARFq stands for the
number of covariates randomly chosen at each node to consider as the potential split variable. All bagging and
random forest estimates involve 100 trees.

ments in forecast accuracy. The no free lunch theorem of Wolpert and Macready (1997)
states that since the relative performance of the RT and M5’ optimization algorithm varies
across forecasting exercises, with neither dominating in all scenarios. However, we aim to
show the value of undertaking the hybrid strategy relative to M5’ in this section. Specifi-
cally, we propose and consider the following six additional hybrid strategies

(i) BAG0
M5′ : M5’ bagging with each tree leaf estimated by simple average;

(ii) RF0
M5′ : M5’ random forest with each tree leaf estimated by simple average;

(iii) BAGM5′ : M5’ bagging with each tree leaf estimated by linear regression;

(iv) RFM5′ : M5’ random forest with each tree leaf estimated by linear regression;

(v) MABM5′ : M5’ bagging with each tree leaf estimated by model averaging;

(vi) MARFM5′ : M5’ random forest with each tree leaf estimated by model averaging.
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Strategies (i) and (ii) are similar to conventional bagging and random forest with the
exception that the splitting rule follows the standard deviation reduction in M5’ instead
of the SSR reduction in CART. Strategies (iii) and (iv) are the standard M5’ methods we
discussed in Table A2. Strategies (v) and (vi) follows the idea of MAB and MARF that
we proposed in the main text, in which we apply model averaging technique to the M5’
bagging and random forest. All tuning parameters are set to the default settings and we
only consider random forest with a set of 15 explanatory variables chosen randomly to
determine the split at each node.

Note that for methods (iii) and (iv), not all variables are needed in the linear model
and only variables that are reference by the splitting process are included. Therefore, for
methods (v) and (vi), we apply model averaging to each leaf using only the variables
included in that leaf. We construct the candidate model set using the HRMS method
introduced in Xie (2017).

We repeat the empirical exercises undertaken in the main text using the six strate-
gies discussed above and compare their relative performance to the benchmark HRCp

method. The results are presented in Table A3. Notice that the M5’ with simple aver-
age methods does not have good performance relative to other M5’ methods. Improved
performance relative to the benchmark is not achieved in any case with the exception
of retail movie unit sales with MSFE being the risk function. In general, model averag-
ing M5’ hybrid methods has good performance relative to all of the other strategies. On
several occasions, they perform similarly to M5’ with linear regression counterparts.

Using Monte Carlo simulation, we also compare conventional M5’ estimators to model
averaging M5’ hybrids, following a identical set-up to that described in Section 3 of the
main text. We reproduce Figures 2 and 3 on BAGM5′ , RFM5′ , MABM5′ , and MARFM5′ . The
results are plotted in figure A1. We see that with random heteroskedasticity, the gains
from adding model averaging to M5’ appear quite small, particularly in large samples.
However, when heteroskedasticity arises due to neglected parameter heterogeneity, we
find larger gains from incorporating model averaging in place of linear regression within
the terminal nodes. This likely arises since with neglected parameter heterogeneity, we
are able to use multiple models, each allowing the same covariate to have different effects
to explain more of the heterogeneity in the outcomes within the leaves than under the
random heteroskedasticity scenario. Notice all that since relative to random forest, M5’
grows shorter trees are grown, we actually exhibit larger gains with model averaging as
the sample size increases, since there are more observations and hence more candidate
models available in each terminal node.

Last, the relative variable importance by M5’ hybrids can also be calculated in the
same fashion as MAB and MARF. The role of social media variables in the top 10 are
similar to the random forest results presented in the main text. However, the genres of
the films now play a larger role in explaining retail movie unit sales, which may arise
since the subgroups are formed by a different objective function to determine splits in the
tree.
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Figure A1: Relative Performance of M5’ and Model Averaging M5’ Learning
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Table A3: Comparing Conventional M5’ Estimators with Model Averaging M5’ Hybrids

nE BAG0
M5′ RF0

M5′ BAGM5′ RFM5′ MABM5′ MARFM5′ Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.7421 0.7974 0.7150 0.7035 0.7043 0.7040 1.0000
20 0.9761 0.8778 0.8605 0.8317 0.8579 0.8249 1.0000
30 0.9038 0.9674 0.8790 0.9230 0.8762 0.9180 1.0000
40 1.0767 1.2133 1.1980 1.0487 1.1004 1.0138 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.8024 0.7793 0.7462 0.7508 0.7203 0.7485 1.0000
20 0.8463 0.8167 0.8028 0.7962 0.7968 0.7870 1.0000
30 0.8183 0.8386 0.8182 0.8341 0.8098 0.8313 1.0000
40 0.8620 0.9022 0.8327 0.8488 0.8032 0.9048 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.0750 1.0748 0.8874 0.9206 0.8536 0.8443 1.0000
20 1.1462 1.2109 0.9845 1.0963 0.9782 1.0728 1.0000
30 1.0464 1.0311 0.9724 1.0379 1.0790 1.0135 1.0000
40 1.0091 1.0606 0.9816 1.0730 0.9997 1.0272 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.9743 0.9023 0.8626 0.9049 0.8589 0.8942 1.0000
20 0.8597 0.9766 0.8841 0.9397 0.8766 0.8744 1.0000
30 0.8480 0.9309 0.9577 0.9218 0.8405 0.9124 1.0000
40 0.9049 0.9237 0.9532 0.9463 0.8944 0.9358 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the
table. The remaining entries provide the ratio of the degree of the respective forecast
error metric of the estimator using specific estimation approach denoted in the column
relative to results using the HRCp method presented in the last column.

The difference in how splits are conducted and the shorter tree may explain why the
results in the lower panel of Table A3 appear less promising. Similar to how applied
econometrics studies often carry out robustness of logit regression results with linear
probability models, social scientists and practionners should likely investigate how re-
sults differ based on different split rules used to build tree structures. Yet, our results
continue to find that irrespective of the split rules, there are gains from using model aver-
aging in the terminal nodes.

B.5 Support Vector Regression

Support vector regression (SVR) is an extension of the support vector machine (SVM)
classification method of Vapnik (1996) to consider a real-valued outcome variable as in the
classical regression problem. Prior to describing SVR, we will provide some intuition for
how SVM works in a binary classification setting. SVM was introduced in Boser, Guyon,
and Vapnik (1992) and provides a learning algorithm that infers functional relationships
in the underlying dataset by following the structural risk minimization induction prin-
ciple (formally defined below) of Vapnik (1996). The major difference with classical re-
gression or tree based methods is that SVM allows for complex nonlinear relationships
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Table A4: Relative Importance of the Predictors by M5’ Hybrids

Ranking With Twitter Variables Without Twitter Variables
MABM5′ MARFM5′ MABM5′ MARFM5′

Panel A: Open Box Office
1 Screens Screens Screens Screens
2 Volume: T-21/-27 Volume: T-1/-3 Rating: R Budget
3 Volume: T-7/-13 Budget Rating: PG Rating: R
4 Budget Volume: T-4/-6 Genre: Adventure Genre: Horror
5 Volume: T-1/-3 Volume: T-14/-20 Budget Rating: PG13
6 Volume: T-14/-20 Volume: T-7/-13 Genre: Horror Rating: PG
7 Volume: T-4/-6 Volume: T-21/-27 Genre: Comedy Genre: Comedy
8 Weeks Genre: Horror Genre: Fantasy Genre: Adventure
9 Sentiment: T-1/-3 Genre: Adventure Genre: Action Weeks

10 Sentiment: T-14/-20 Sentiment: T-1/-3 Weeks Genre: Animation

Panel B: Movie Unit Sales
1 Genre: Biography Screens Screens Screens
2 Genre: Mystery Budget Weeks Weeks
3 Screens Weeks Budget Budget
4 Weeks Volume: T+8/+14 Rating: R Genre: Adventure
5 Budget Volume: T-21/-27 Genre: Comedy Genre: Fantasy
6 Volume: T+8/+14 Volume: T+1/+7 Genre: Horror Genre: Drama
7 Volume: T+0 Volume: T+15/+21 Genre: Thriller Genre: Comedy
8 Volume: T+1/+7 Volume: T+0 Rating: PG Rating: R
9 Volume: T-4/-6 Volume: T+22/+28 Genre: Animation Rating: PG13

10 Genre: Animation Volume: T-1/-3 Rating: PG13 Genre: Family

Note: This table presents the rank order of the importance of the predictors for film revenue by the
respective machine learning.

by transforming the original data into a higher dimensional space via an a priori chosen
mapping.

Intuitively, SVM finds a hyperplane in this higher dimensional space that perfectly
separates the two classes (i.e. two values of the outcome). That is, all data points in
one class lie above the hyperplane and all points below rely in the other class. However,
there might be more than one separating hyperplane and the preferred one is that which
maximizes the distance to the closest point. The distance from the hyperplane to the
nearest point is called the margin and all data points on the boundary of the margin are
called support vectors. These data points are the sole ones that contribute to the forecast.

Drucker, Burges, Kaufman, Smola, and Vapnik (1996) introduced SVR and following
Hastie, Tibshirani, and Friedman (2009, Chapter 12), we first assume that our DGP can be
expressed by a linear equation as

yi = f (X i) + ei = X iβ + ei = β0 + X̃ iβ1 + ei (A31)

for i = 1, ..., n, where X i = [1, X̃ i] is a 1× (k + 1) input vector and β = [β0, β>1 ]
> are the

coefficients. By assuming a linear DGP we do not have to transform the data into a higher
dimensional space and the goal is to find coefficients that support a function f (X i) of the
input variables X i (this is often referred to as feature vector in the SVR literature) that
deviates from the target variable by a value no greater than a predetermined ε for each
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observation; that is as flat as possible. In other words, ε can be viewed as the maximum
margin for the hyperplane.

To solve the maximization problem described above we transform it into a minimiza-
tion problem of a quadratic cost function. Support vector regression, like OLS, seeks to
minimize a function of residuals, but as we discuss it penalizes residuals in a different
way. Instead of maximizing the margin, SVR minimizes the Euclidean norm of the co-
efficient vector. The reformulation into a quadratic cost function does not change the
optimization problem but assures that all training data only occur in form of a dot prod-
uct between vectors. Formally, SVR solves the following problem to estimate β through
the minimization of

H(β) =
n

∑
i=1

Vε

(
yi − f (X i)

)
+

λ

2
‖β1‖

2, (A32)

where

Vε(ei) =

{
0 if |ei| < ε

|ei| − ε otherwise (A33)

is an ε-insensitive error measure. The ε-insensitive error is a loss function for residuals
that imposes no penalty on residuals smaller than |ε| and penalizes residuals linearly
in the degree to which they exceed |ε|. Examining function (A32) we observe that the
size of coefficient is penalized using the squared l2 norm, which reduces the variance of
the model and hence overfitting. While the parameter ε is (usually) predetermined, λ
is a more traditional regularization parameter that can be estimated by cross-validation.
Therefore, SVR can be regarded as another form of penalized regression whose perfor-
mance can be influenced by the values of its tuning parameters, ε and λ.

Let β̂ =
[
β̂0, β̂

>
1
]> be the minimizers of function (A32), the solution function can be

shown to have the form

β̂1 =
n

∑
i=1

(α̂∗i − α̂i)X̃>i ,

f̂ (X) =
n

∑
i=1

(α̂∗i − α̂i)X̃X̃>i + β̂0ιn,

where ιn is an n × 1 vector of ones, X̃ is the n × k matrix with each row being X̃ i for
i = 1, ..., n, and the parameters α̂i and α̂∗i are the nonnegative multiplier of the following
Lagrangian equation

min
α̂i,α̂∗i

ε
n

∑
i=1

(α̂∗i + α̂i)−
n

∑
i=1

yi(α̂
∗
i − α̂i) +

1
2

n

∑
i=1

n

∑
i′=1

(α̂∗i − α̂i)(α̂
∗
i′ − α̂i′)X̃ iX̃

>
i′
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subject to the constraints

0 ≤ α̂∗i , α̂i ≤ 1/λ,
n

∑
t=1

(α̂∗i − α̂i) = 0, α̂iα̂
∗
i = 0

for all i = 1, ..., n. The non-zero values of α̂∗i − α̂i for i = 1, ..., n are referred to as the
support vector. Only these observations that are at least ε away from the predicted hy-
perplane support it; and contribute to the forecast. Thus, the solution is sparse and the
prediction variance is reduced. In other words, outliers are removed since the linear pe-
nalization of residuals beyond ε ensures these observations do not contribute to the pre-
diction.5 Since our application is focused strictly on forecasting, we are not concerned that
a limitation of SVR is that procedures to undertake statistical inference methods require
distributional assumptions that are rarely satisfied in practice.

B.5.1 SVR with a Nonlinear DGP

We next extend the above linear SVR framework to a more general case where the DGP
can take a more general form such as

yi = f (X i) + ei, (A34)

where f is unknown to the researcher. As with SVM, to allow for complex nonlinear rela-
tionships and approximate f , the original data is transformed from k-dimensional feature
space into a new higher dimensional space feature space whose dimensions depends on
an a priori chosen mapping scheme. That is, suppose we reexpress

yi = f (X i) + ei = β0 + h(X̃ i)β2 + ei, (A35)

where h(·) : Rk → Rq is a set of basis functions which can be infinite dimensional (there
is a relation with the existence of a Hilbert space (Courant and Hilbert, 1953) and β2 is the
coefficient of the nonlinear SVR that is identical to β1 if the DGP is linear. In this new Rq

space, the relationship between the outcome and the new feature vector h(X̃ i) is believed
to be in linear form. Intuitively, we can then use the same support vector regression
algorithm to find the separating hyperplane for a linear relationship (i.e. equation (A31))
on this transformed version of the data allowing us to get a non-linear algorithm.

To estimate the non-linear algorithm requires a kernel based procedure that can be in-
terpreted as mapping the data from the original input space into a potentially higher
dimensional “feature space”, where linear methods may then be used for estimation.

5In other words the support vector has a somewhat local interpretation whereas the least absolute de-
viation estimator (i.e. conditional median regression) has a strictly local interpretation since it employs an
absolute value loss function. That said, SVR does not have the same robustness to outliers as a conditional
quantile estimator, but it is much less susceptible to outliers than linear regression or LASSO estimators.
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The kernel function allow for non-linear relationships and this data transformation is
achieved if the kernel satisfies conditions given by Mercer’s theorem (Mercer, 1909).6 The
use of kernels enables us to avoid paying the computational penalty implicit in the num-
ber of dimensions, since it is possible to evaluate the training data in the feature space
through indirect evaluation of the inner products. This is often referred to as the kernel
trick.

As such, the kernel function is essential to the performance of SVR since it contains
all the information available in the model and training data to perform supervised learn-
ing; with the sole exception of having measures of the outcome variable. By letting q
grow large (q >> k), and through appropriate choices of h(·), SVR gains many of the
advantages of series estimators that are frequently used in nonparametric econometrics.
Formally, we define the kernel function K(·) as the linear dot product of the nonlinear
mapping,

K(X̃ i, X̃ i′) = h(X̃ i)h(X̃ i′)
>.

In our analysis, we contrast various kernel choices, including the linear kernel, the Gaus-
sian kernel (sometimes referred to as “radial basis function” and “Gaussian radial basis
function” in the support vector literature), and polynomial kernels with different orders:

Linear : K(X̃ , X̃ i′) = X̃ iX̃
>
i′ ,

Gaussian : K(X̃ i, X̃ i′) = exp
(
−‖X̃ − X̃ i′‖2

2σ2
x

)
,

Polynomial : K(X̃ i, X̃ i′) = (γ + X̃ iX̃
>
i′ )

d,

where the hyperparameters σ2
x , γ, and d can be tuned through cross-validation.

As before, to solve the maximization problem, we transform it into a minimization
problem of the a quadratic cost function. In this setting, we estimate the coefficients
β =

[
β0, β>2

]> through the minimization of

H(β) =
n

∑
i=1

Vε

(
yi − f (X i)

)
+

λ

2
‖β2‖

2. (A36)

Note that β2 is implicit and can be infinite dimensional. The solution of equation (A36)
now has the form

f̂ (X) =
n

∑
t=1

(α̂∗i − α̂i)K(X̃, X̃ i) + β̂0ιn

6Mercer’s theorem states that for K(·) to be a valid (Mercer) kernel, it is necessary and sufficient that for
any finite input data, the corresponding kernel matrix is both symmetric and positive semi-definite. The
elements of this kernel matrix are given by the dot-product in the transformed feature space.
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with α̂∗t and α̂t being the nonnegative multiplier of the following Lagrangian equation

min
α̂i,α̂∗i

ε
n

∑
t=1

(α̂∗i + α̂i)−
n

∑
i=1

yi(α̂
∗
i − α̂i) +

1
2

n

∑
i=1

n

∑
i′=1

(α̂∗i − α̂t)(α̂
∗
i′ − α̂i′)K(X̃ i, X̃ i′).

This appears similar to the solution of the SVR case in the linear DGP setting and the main
addition being the kernel function. In the nonlinear setting, the optimization problem
corresponds to finding the flattest function in feature space, rather than input space.

B.6 Least Squares Support Vector Regression

SVR requires solving the regression problem by means of convex quadratic programing
in addition to the researcher having to specify i) two hyperparameters ε and λ, and (ii) a
kernel function together with its respective parameters. Suykens and Vandewalle (1999)
proposed a modification to the classic SVM that eliminate the hyperparameter ε and re-
places the original ε-insensitive loss-function with a least-square loss function. This is
known as least squares SVM, which solves a set of linear equations to find the mini-
mum of the cost function without requiring quadratic programming. The least squares
SVM is more computationally efficient than classic SVM and is computationally capable
to deal with large datasets with high dimensionality. Subsequently, for continuous out-
come variables Suykens, Gestel, Brabanter, Moor, and Vandewalle (2002) extended this
idea to develop least squares SVR, henceforth SVRLS.

Similar to the minimization problem in equation (A32), the SVRLS considers minimiz-
ing

H(β) =
n

∑
i=1

e2
i +

λ

2
‖β2‖

2. (A37)

Thus, the classic SVR formulation is modified at two points. The error term ei in the
constraint (A33) is now denoted by an equality to emphasize that it represents the true
deviation between actual values and forecasts in the SVRLS formulation, rather than the
inequality constraints that define the maximum margin variable needed to ensure feasi-
bility of SVR. Second, in equation (A37) a squared loss function replace the ε-insensitive
loss function in SVR.

Notice, that the cost function in equation (A37) consists of a residual sum of squares
(SSR) fitting error as well as a regularization term. This is also a standard procedure for
the training of multi-layer perceptrons and the formulation of equation (A37) can also be
regarded as a nonparametric ridge regression function formulated in the feature space.
SVRLS involves choosing a kernel function and kernel parameters, and determining the
regularization parameter usually via cross validation. These settings of the hyperparam-
eters can be viewed as model selection with SVRLS.
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SVRLS has a global and unique solution that can be found with computationally effi-
cient numerical optimization methods. An important feature of the solution is that every
data point now becomes a support vector, whereas SVR has sparse solution. This can
be clearly illustrated by considering the conditions for optimality. We define H to be the
n× q basis matrix where q > n. For ease of exposition, we let the intercept term β0 be ab-
sorbed in h(·). The coefficient β can be estimated by minimizing the following penalized
least squares criterion

H(β) = (y− Hβ)>(y− Hβ) +
λ

2
‖β‖2.

The solution β̂ should satisfy −2H>(y− H β̂) + λβ̂ = 0 and the prediction

f̂ (X) = H β̂ =

(
HH> +

λ

2
In

)−1

HH>y ≡ Py. (A38)

where In is a n× n identity matrix and

P ≡
(

HH> +
λ

2
In

)−1

HH> (A39)

is a n× n matrix. Note that the n× n matrix HH> is the kernel matrix that is positive def-
inite and each element of the matrix is a symmetric continuous function. Equation (A38)
implies that although the matrix H is implicit, we can make predictions as long as the ker-
nel we predetermined is explicit. We consider linear, Gaussian, and polynomial kernels
for SVRLS in this paper. It is also worth noting that Foxall, Cawley, Talbot, Dorling, and
Mandic (2002) and Cawley, Talbot, Foxall, Dorling, and Mandic (2004) each considered
extending SVRLS to allow for potential heteroskedasticity and introduced a regularized
kernel regression model for such a setting. In the next subsection, we discuss how to ex-
tend SVRLS to allow for model uncertainty and in one step additionally estimate model
averaging weights in both homoskedastic and heteroskedastic settings.

B.7 Model Averaging SVRLS

Since SVRLS considers minimizing a least squares loss function, there is possibility to
incorporate least squares model averaging. In contrast, the classic SVR deals with the
ε-insensitive loss-function. The conventional least squares model averaging framework
is incompatible with the classic SVR. Moreover, the sparseness of SVR ensures that dif-
ferent support vectors are found for different models and hyperparameter combinations,
presenting additional challenges for interpreting a model averaging SVR hybrid. Com-
bining the classic SVR with model averaging may require results from an emerging area
of research that extends model averaging to functional data (see e.g. Zhang, Chiou, and
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Ma 2018), which we leave for further research. As such, we propose a hybrid model
averaging estimation based on SVRLS only in this section.

In practice, the DGP presented in equation (A35) is unknown and we approximate
it with a set of M candidate models. In our application in the main text, the candidate
model set is constructed by the model screening strategy discussed in Section 2.1 of the
text. Alternatively, the full combination of all potential regressors could be used. We
denote the input variables by model m as X(m)

i , in which the 1 × k(m) vector X(m)
i is a

subset of X t that includes all potential explanatory variables. The mth candidate model
can be written as

yi = f (X(m)
i ) + e(m)

i ,

where the superscript m indicates variables associate with model m. Let f̂ (X(m)) = f̂ (m)

for m = 1, ..., M be the set of predictions corresponding to different candidate models.
Define the weight vector w = [w(1), ..., w(M)]> which follows the weight set definition in
H:

H ≡
{

wm ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
.

Then, the weighted average prediction is f̂ (w) = ∑M
m=1 w(m) f̂ (m) = P(w)y, where f̂ (m) =

P(m)y following equation (A38), P(w) = ∑M
m=1 w(m)P(m), and P(m) is the P matrix defined

in equation (A39) for model m.

The weight vector is essential in model averaging estimation. Ullah and Wang (2013)
presents recent developments in model selection and model averaging for parametric and
nonparametric models. Ullah and Wang (2013) argues that for nonparametric models
with prediction function following the formulation of Equation (A38), one can estimate
the model averaging weights by applying Mallows criterion when the error term exhibits
homoskedasticity.

Cn(w) =
n

∑
i=1

ê2
i (w) + 2σ2

n

∑
i=1

pii(w) (A40)

We extend the above criterion and propose estimating w by minimizing the following
criterion with w ∈ H based on a heteroskedastic error term:

Cn(w) =
n

∑
i=1

ê2
i (w) + 2

n

∑
i=1

(
êi(w)

)2pii(w), (A41)

where pii(w) is the ith diagonal term in P(w) and êi(w) is the ith element in

ê(w) =
M

∑
m=1

w(m)ê(m) = (I − P(w))y. (A42)

Equation A42 represents the averaged SVRLS residuals. Estimating w by Criterion (A41)
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is a convex optimization process. Criteria (A41), which also appears in an identical fash-
ion as equation (10) in the main text, can be regarded as the HPMA criteria for nonpara-
metric models.

We discuss the HPMA criteria in further detail in Section D.5 and briefly this extends
the PMA used in the second step of our hybrid procedure with regression trees, to allow
for heteroskedastic error terms. The Mallows criterion is often used as a stopping rule for
various forms of stepwise regression and it is asymptotically equivalent to the squared
error. Hansen (2007) proves that the model average estimator that minimizes the Mallows
criterion also minimizes the squared error in large samples. In the next section of the
Appendix, we provide intuition on why incorporating model averaging yields gains and
remind the reader of figure 1 in the main text for simulation evidence.

C Further Intuition on the Hybrid Method for Tree Based
Algorithms

Hansen (2020) stresses that the default in empirical work should be to assume that the
errors in regression models are heteroskedastic, not the converse. He further claims the
definition of heteroskedasticity in most econometrics textbooks adds confusion. He ar-
gues that rather than framing heteroskedasticity as the case where the variance of the
regression error varies across observations, researchers should view it simply as the con-
ditional variance depends on observables.

There was very little work in the field of econometrics on the consequences of het-
eroskedastic data when Breiman, Friedman, and Stone (1984) was first published. Thus,
the choice of a homogeneous variance across the entire explanatory-variable space in
Breiman, Friedman, and Stone (1984) was innocuous, even though it corresponds to im-
posing a homoskedasticity assumption. This algorithm would split in the correct places
with homoskedastic data in a computationally efficient manner.

The focus of Breiman, Friedman, and Stone (1984) was on computational efficiency
and assuming homoskedasticity is common in many econometric innovations. Hansen
(2020) writes “Homoskedasticity greatly simplifies the theoretical calculations, and it is
therefore quite advantageous for teaching and learning. It should always be remembered,
however, that homoskedasticity is never imposed because it is believed to be a correct
feature of an empirical model, but rather because of its simplicity.” This quote motivates
our consideration of the challenges posed by heteroskedastic data for forecasting with
statistical learning algorithms.

The idea of using a local constant model within terminal nodes in Breiman, Friedman,
and Stone (1984) is also well justified by econometrics, since it is well known that the
best predictor for an outcome y (in the class of constants) is the unconditional mean as
it minimizes the mean squared prediction error. Yet, with the availability of covariates a
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researcher can gain improvements in mean squared prediction error. In the econometrics
literature, it has been proven under assumptions of data having finite variances and in-
dependent variation, that given a realized value of x, the conditional mean E(y|x) is the
best predictor of y. The linear conditional expectation function (E(y|x)) is quite flexible
since it can include interaction terms and non-linear terms. The challenge that arises in
practice is there is uncertainty about which covariates to include when we calculate the
conditional mean. Put differently, the functional form is typically unknown. Many of
the linear regression tree estimator discussed in the preceding section require a low di-
mensional set of covariates for their implementation and assume they have the correct
functional form.

The reason we advocate model uncertainty is that the conditional expectation func-
tion for different types of films may not only contain different sets of covariates but may
also have the parameters vary across the models. This parameter heterogeneity is what
causes heteroskedasticity as is well known from a random coefficient model allows the
returns to each explanatory variable to vary in the population. Further, the linear random
coefficient model implies a linear conditional expectations function with a heteroskedas-
tic error. The idea of the hybrid strategy can basically be viewed as allowing there to
be different weights to models with different parameters in subgroups of films that are
ex-post to tree splitting thought to be as similar as possible. By averaging across mul-
tiple candidate models, our strategy provides a better approximation since it nests all
the simpler conditional expectation function (given by a single candidate model) and the
unconditional mean (which itself is another candidate model.

C.1 Additional Monte Carlo Evidence on the Effect of Parameter Het-
erogeneity

In this subsection, we demonstrate how heterogeneity can affect the effectiveness of re-
cursive partitioning strategies that engage in forecasting outcomes based on the input
variables. We consider a simplified version of the DGP (10) from the main text

yi = β1x1i + (β2 + r · σi)x2i + ei

for i = 1, ..., 500. We set both xi’s follow U(0, 1), β1 = β2 = 1 and σi ∼ N(0, 1). We let
the error term ei ∼ N(0, 0.01) which has a smaller impact on the DGP. We consider the
following two scenarios:

1. No Heterogeneity: we set the parameter r = 0 and eliminate heterogeneity.

2. Parameter Heterogeneity: heterogeneity in the coefficient on x2i for each observa-
tion is created by setting r = 1/5. Note that the expected value of the coefficients
on x2i is identical to the one used in Scenario 1 of the main text.
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For simplicity, we restrict the number of splits to be three which generates four par-
titions for each scenario. Since both xi’s are generated from the same distribution, the
splits should ideally divide the plots into four rectangles of equal size. The results pre-
sented in Figure A2 consider subplot (a) corresponding to no heterogeneity and subplot
(b) which considers parameter heterogeneity. For each subplot, the horizontal and verti-
cal axes represent x1 and x2, respectively. Scatter plots with red diamonds correspond to
the pairs of xi’s associated with yi’s on the lower 25% quantile; and blue circles represent
the remaining pairs of xi’s.

Figure A2: Demonstrate the Effect of Heteroskedasticity on Initial Split Location
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As Figure A2(a) shows, when there is no heterogeneity, the regression tree divides the
plots into four similar-sized rectangles with most of the diamonds located in the lower left
quadrant. However, once we allow parameter heterogeneity, as demonstrated in Figure
A2(b), the splits are uneven and the diamonds are mixed with circles, which hints at
the ineffectiveness of conventional recursive partitioning under heterogeneity. When we
remove the restriction of the number of splits to allow more than four groups, we continue
to find more heterogeneity in outcomes in the leaves of trees that use data generated in
the parameter heterogeneity scenario relative to the no heterogeneity scenario.

D Econometric Methods

In this section, we first provide details on how we implement each econometric strat-
egy considered in the simulation experiment considered in Section 4.1 of the data. This
section also provides a review of several existing heteroskedasticity-robust model aver-
aging methods and several of the Lasso based methods. We summarize the theoretical
conclusions and provide details on the computational algorithm used for each method.
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D.1 Traditional econometric approaches to model building

The first estimator considered in the simulation experiment is a general unrestricted model
(GUM) that includes every independent variable in our data set linearly. OLS estimation
is used and our data set contains fewer covariates (when we exclude the possibility of
both higher order and interaction terms). A special case of the GUM is MTV, which is
simply the subset of the GUM that excludes all of the Twitter generated sentiment and
volume explanatory variables. The MTV model is used as a first step to gain an idea of
the importance of the inclusion of social media data in explaining variation in film rev-
enues. It is well-established in the econometrics literature that a kitchen sink model such
as GUM (and MTV) will lose efficiency if some of the explanatory variables are irrelevant
in the sense of its exclusion would not affect the unbiasedness of the OLS estimator.

To determine which regressors should remain in the estimating equation of GUM,
model selection methods have been developed in the econometrics literature. Among the
best known of the methods is Akaike’s Information Criterion (AIC) that summarizes the
quality of a model by trading fit, measured by the maximized log likelihood, against com-
plexity, measured by the number of estimated parameter. This correction introduced in
Akaike (1973) is available in every statistics package and uses asymptotic theory to con-
struct an analytical bias correction that arises since using the maximized log-likelihood,
based on the estimated parameters, is an upward biased estimator of the Kullback-Leibler
Divergence, the quantity that measures how the probability distribution of the approxi-
mation model is different from the true DGP.

An alternative approach to selecting a model using a subset of regressors from GUM
is the general to specific method (GUM) of Hendry and Nielsen (2007). This approach
begins with a GUM that nests restricted models and, thus, allows any restrictions to be
tested with t-tests, and F-tests. Using the results of these specification tests, one will move
from the GUM to a smaller, more parsimonious, specific model. This general to specific
(GETS) strategy does not suffer from path dependence that plagues a backwards stepwise
approach since it only removes explanatory variables if the new model is a valid reduc-
tion of the GUM based on a researcher pre-specified p-value. If competing models are
selected, encompassing tests or information criteria such as the AIC can be used to select
a final model.

Last, the prediction model averaging proposed by Xie (2015) is described in the main
text. The weights that are applied to all potential candidate models are determined as
the analog of the prediction criterion of Amemiya (1980). In the remaining subsections
of this section, we provide extended discussions of the remaining dimension reduction,
econometric and model screening approaches whose performance is evaluated in our
study.
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D.2 Jackknife Model Averaging

Hansen and Racine (2012) proposed a jackknife model averaging (JMA) estimator for
the linear regression model. The model set-up is identical to that provided in section 2.
Hansen and Racine (2012) demonstrate the asymptotic optimality of the JMA estimator
in the presence of heteroskedasticity and suggest selecting the weights by minimizing a
leave-one-out cross-validation criterion

JMA(w) =
1
n

w>Ẽ>Ẽw with ŵ = arg min
w∈H∗

JMA(w), (A43)

where Ẽ = [ẽ1, ..., ẽM]> is an n×M matrix of jackknife residuals and ẽ(m) stands for the
jackknife residuals of model m.

The jackknife residual vector ẽ(m) = y − µ̃(m) for model m requires the estimate of
µ̃(m), where its ith element, µ̃

(m)
i , is the least squares estimator µ̂

(m)
i computed with the

ith observation deleted. In practice, ẽ(m) can be conveniently written as ẽ(m) = D(m)ê(m),
where ê(m) is the least squares residual vector and D(m) is the n× n diagonal matrix with
the ith diagonal element equal to (1− h(m)

i )−1. The term h(m)
i is the ith diagonal element

of the projection matrix P(m).

Hansen and Racine (2012) assume H∗ to be a discrete set of
{

0, 1
N , 2

N , ..., 1
}

for some
positive integer N. Obtaining w following equation (A43) with condition w ∈ H∗, is a
quadratic optimization process. Note that while there is a difference between our contin-
uous H set defined in equation (A48) and H∗, this should be negligible in practice since
N can take any value.

D.3 Heteroskedasticity-Robust Cp Model Averaging

Liu and Okui (2013) also use the same model set-up to propose the heteroskedasticity-
robust Cp (HRCp) model averaging estimator for linear regression models with heteroskedas-
tic errors. They demonstrate the asymptotic optimality of the HRCp estimator when
the error term exhibits heteroskedasticity. Liu and Okui (2013) propose computing the
weights by the following feasible HRCp criterion

HRCp(w) = (y− P(w)y)>(y− P(w)y) + 2
n

∑
i=1

ê2
i pii(w) (A44)

with ŵ = arg min
w∈H

HRCp(w). Obtaining w following (A44) with condition w ∈ H is a

quadratic optimization process.
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Equation (A44) includes a preliminary estimate êi that must be obtained prior to esti-
mation. Liu and Okui (2013) discuss several ways to obtain êi in practice. When the mod-
els are nested, Liu and Okui (2013) suggest using the residuals from the largest model.
When the models are non-nested, they recommended constructing a model that contains
all the regressors in the potential models and use the predicted residuals from the esti-
mated model. In addition, a degree-of-freedom correction on êi is recommended to im-
prove finite-sample properties. For example, when the mth model is used to obtain êi, we
can use

ê =
√

n/(n− k(m))(I − P(m))y

instead of (I − P(m))y to generate the preliminary estimate êi.

D.4 Iterative HRCp Model Averaging

Liu and Okui (2013) also consider an iterative procedure in the presence of too many
regressors, a common feature of big data sources. The procedure takes the following
steps

1. Begin with an initial estimate σ̂i using one selected model (Liu and Okui (2013)
recommended using the largest model). This initial estimate can always be written
as σ̂i(ŵ0), with w0 being a special weight vector such that the selected model is
assigned weight 1 and 0s for all other models.

2. Plug σ̂i(ŵ0) in the HRCp criterion function defined in equation (A44) and obtain the
next round ŵ1.

3. Using ŵ1, we obtain the average residual êi(ŵ1) and hence σ̂i(w1). We then use
σ̂i(w1) to generate the next round weight vector.

4. Repeat steps (2) and (3) until weight vector ŵj is obtained that satisfies
∣∣ĤRCp(ŵj)−

ĤRCp(ŵj−1)
∣∣ ≤ ϕ, where ϕ is a predetermined tolerance level (usually a small

number).

A problem with this iterative process is that it can be computationally demanding,
since multiple steps of quadratic optimization are required. To overcome this problem,
we can either choose a relatively large ϕ or fix the total number of iterations.

D.5 Hetero-robust Prediction Model Averaging (HPMA) Method

Our setup is similar to both Wan, Zhang, and Zou (2010) and Liu and Okui (2013) by
allowing the candidate models to be non-nested. We observe a random sample (yi, xi) for
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i = 1, ..., n, in which yi is a scalar and xi = (xi1, xi2, ...) is countably infinite. We consider
the following data generating process (DGP)

yi = µi + ei, µi =
∞

∑
j=1

β jxij, E(ei|xi) = 0 (A45)

for i = 1, ..., n and µi can be considered as the conditional mean µi = µ(xi) = E(yi|xi)
that is converging in mean square.7 We assume the error term to be heteroskedastic by
letting σ2

i = E(e2
i |xi) denotes the conditional variance which is allowed to depend on xi.

Now we consider a set of M candidate models. We allow the M models to be non-
nested. The mth candidate model that approximates the DGP in equation (A45) is

yi =
k(m)

∑
j=1

β
(m)
j x(m)

ij + b(m)
i + ei, (A46)

for m = 1, ..., M, where x(m)
ij for j = 1, ..., k(m) denotes the regressors, β

(m)
j denotes the

coefficients, and b(m)
i ≡ µi −∑k(m)

j=1 β
(m)
j x(m)

ij is the modeling bias.

Define y = [y1, ..., yn]>, µ = [µ1, ..., µn]>, and e = [e1, ..., en]>. The DGP in equation
(A45) can be presented by y = µ + e. Let X(m) be a full rank n × k(m) matrix of inde-
pendent variables with (i, j)th element being x(m)

ij . The estimator of µ from the mth model
is

µ̂(m) = X(m)
(
X(m)>X(m)

)−1X(m)>y = P(m)y,

where P(m) = X(m)(X(m)>X(m))−1X(m)> for all M. Similarly, the residual is ê(m) = y−
µ̂(m) = (In − P(m))y for all m. Since P(m) is n× n for each m, we follow standard model
averaging procedure and construct an averaged projection matrix P(w):

P(w) =
M

∑
m=1

w(m)P(m), (A47)

where P(w) is a weighted average of all potential P(m). Due to its structure, P(w) is
symmetric but not idempotent. The variable w = [w1, w2, ..., wM]> is a weight vector we
defined in the unit simplex in RM,

H ≡
{

w ∈ [0, 1]M :
M

∑
m=1

w(m) = 1

}
. (A48)

7Convergence in mean square implies that E(µi −∑k
j=1 β jxij)

2 → 0 as k→ ∞.

37



Then, the model averaging estimator of µ is

µ̂(w) =
M

∑
m=1

w(m)µ̂(m) =
M

∑
m=1

w(m)P(m)y = P(w)y. (A49)

Similarly, we define the averaged residual as

ê(w) =
M

∑
m=1

w(m)ê(m) = (I − P(w))y. (A50)

The performance of a model averaging estimator crucially depends on its choice of
the weight vector w. Xie (2015) proposed a predictive model averaging (PMA) method
that selects w through a convex optimization of a PMA criterion function of Amemiya
(1980). One merit of the PMA method is that no preliminary estimates are required. The
limitation of the PMA method is that the error term is required to be homoskedastic.

In the spirit of Liu and Okui (2013), we extend the PMA method to a heteroskedastic-
robust predictive model averaging (HPMA) method with the following criterion function

HPMA(w) = (y− P(w)y)>(y− P(w)y) + 2
n

∑
i=1

(
êi(w)

)2pii(w), (A51)

where P(w) is defined in (A47), êi(w) is the ith element in ê(w) defined in equation (A50),
pii(w) is the ith diagonal term in P(w). We estimate the weighting vector following

ŵ = arg min
w∈H

HPMA(w).

Similar to PMA, obtaining ŵ from HPMA with restrictions w ∈ H is a convex optimiza-
tion process.

D.5.1 Asymptotic Optimality

In this subsection, we investigate the asymptotic properties of the HPMA estimator of
w. We demonstrate that the proposed HPMA estimator is asymptotically optimal, in the
sense of achieving the lowest possible mean squared error.

Let the average squared error loss and the corresponding l2 type risk be

L(w) = (µ̂(w)− µ)>(µ̂(w)− µ), (A52)
R(w) = EL(w), (A53)

where µ̂(w) is defined in equation (A49). To prove the optimality of HPMA, we assume
the following regularity conditions similar to those demonstrated in Liu and Okui (2013),
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Assumption AS 1 There exists ε > 0 such that min1≤i≤n σ2
i > ε.

Assumption AS 2 E(e4G
i |xi) ≤ κ < ∞ for some integer 1 ≤ G < ∞ and for some κ.

Assumption AS 3 Mξ−2G ∑M
m=1

(
R(w0

m)
)G → 0 as n → ∞, where ξ ≡ infw∈H R(w) and

w0
m is a vector whose mth element is 1 and all other elements are 0s.

Assumption AS 4 max1≤m≤M max1≤i≤n p(m)
ii = O(n−1/2), p(m)

ii is the ith diagonal element
of P(m).

Assumptions AS 1-AS 4 correspond to Assumptions 2.1-2.4 in Liu and Okui (2013).
Assumptions AS 1 and AS 2 establish bounds on the error terms and conditional mo-
ments. Assumptions AS 3 is a convergence condition that requires ξ goes to infinity faster
than M and maxm R(w0

m). Assumptions AS 4 is a standard convergence condition on pro-
jection matrices.

Assumption AS 5 max1≤m≤M ξ−1 p̃µ>(I−P(m))µ
p→ 0 and max1≤m≤M M2ξ−2G p̃2G(µ>(I−

P(m))µ
)G p→ 0, where p̃ ≡ supw∈Hmax1≤i≤n(pii(w)).

Assumption AS 6 max1≤m≤M ξ−1 p̃e>P(m)e
p→ 0, max1≤m≤M ξ−1 p̃tr(P(m)Ω)

p→ 0, and
max1≤m≤M M2ξ−2G p̃2G(tr(P(m))

)G p→ 0, where p̃ is defined in Assumption AS 5 and Ω is an
n× n diagonal matrix with σ2

i being its ith diagonal element. .

Assumption AS 5 requires that the bias from the worst potential model is small and
Assumption AS 6 states that the associated variance be small. Similar requirements can be
found in Wan, Zhang, and Zou (2010), which implies that some pre-selection procedures
are always needed not just for the sake of computational efficiency, but also to maintain
asymptotic optimality.8 Finally, we demonstrate the optimality of HPMA estimator in the
following Theorem.

8Frequentist model averaging usually involves a constraint optimization (quadratic, convex, etc.) pro-
cess that can be quite computationally demanding when the set of approximation models is large. A pre-
selection procedure can reduce the total number of models by removing some poorly constructed models
following certain criteria, therefore, improves computation efficiency. On the other hand, conditions like
Assumptions AS 5 and AS 6 are frequently used (Wan, Zhang, and Zou (2010), Liu and Okui (2013), Xie
(2015), etc) in demonstrating asymptotic optimality. As argued in Wan, Zhang, and Zou (2010), a necessary
condition for Assumptions AS 5 and AS 6 type conditions to hold is removing some poorly constructed
models (by a pre-selection procedure) before commencing the model averaging process. See Xie (2017) for
a detailed discussion of various pre-selection methods for frequentist model averaging.
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Theorem 1 Let Assumptions AS 1-AS 6 hold, as n→ ∞, we have

L(ŵ)

infw∈H L(w)

p→ 1, (A54)

where L(w) is defined in equation (A52) and ŵ is the HPMA estimator.

Proof of Theorem 1 Our proof follows Liu and Okui (2013) and Xie (2015). Let P̄(w) be
a diagonal matrix whose ith diagonal element is pii(w). Let êi(w) as the ith element of
ê(w). Because:

ĤPMA(w) = (y− µ̂(w))>(y− µ̂(w)) + 2
n

∑
i=1

ê2
i (w)pii(w)

= HRCp(w) + 2

(
n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

)
.

where HPCp(w) takes another form of the heteroskedasticity-robust model averaging
method Liu and Okui (2013) proposed in (A44) such that

HPCp(w) = (y− P(w)y)>(y− P(w)y) + 2tr
(
ΩP(w)

)
, (A55)

where Ω is an n× n diagonal matrix with σ2
i being its ith diagonal element.

Theorem 1 of Liu and Okui (2013) showed that under Assumptions AS 1 to AS 3

sup
w∈H

{
HRCp(w)

/
R(w)

} p→ 0.

Therefore, we just need to prove that

sup
w∈H

{∣∣∣∣∣ n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

∣∣∣∣∣ /R(w)

}
p→ 0 (A56)

LHS of equation (A56) can be rewritten as

sup
w∈H

{∣∣∣∣∣ n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

∣∣∣∣∣ /R(w)

}
≤ sup

w∈H
|ê(w)>P̄(w)ê(w)−E(e>P̄(w)e)|/ξ

≤ sup
w∈H
{|ê(w)>P̄(w)ê− e>P̄(w)e|+ |e>P̄(w)e−E(e>P̄(w)e)|}/ξ. (A57)

where e(w) is defined in (A50), P̄(w) is an n× n diagonal matrix with pii(w) being its ith
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diagonal element, and ξ is defined in Assumption AS 3. The first term in (A57) is

ê(w)>P̄(w)ê(w)− e>P̄(w)e

= µ>(I − P(w))P̄(w)(I − P(w))µ + 2µ>(I − P(w))P̄(w)(I − P(w))e

+ e>(I − P(w))P̄(w)(I − P(w))e− e>P̄(w)e.

We have

sup
w∈H

µ>(I − P(w))P̄(w)(I − P(w))µ/ξ ≤ p̃ max
1≤m≤M

µ>(I − P(m))µ/ξ
p→ 0 (A58)

by Assumption AS 6. Next, we consider the term

e>(I − P(w))P̄(w)(I − P(w))e− e>P̄(w)e = −2e>P(w)P̄(w)e + e>P(w)P̄(w)P(w)e,

where
sup
w∈H

e>P(w)P̄(w)P(w)e/ξ ≤ p̃ max
1≤n≤M

e>P(m)e/ξ
p→ 0. (A59)

by Assumption AS 6. For the term e>P(w)P̄(w)e, we note that

E(e>P(w)P̄(w)e) = E

(
e>

M

∑
m=1

w(m)P(m)P̄(w)e

)
=

M

∑
m=1

E(e>w(m)P(m)P̄(w)e)

=
M

∑
m=1

E(w(m)e>P(m)P̄(w)e) =
M

∑
m=1

E(w(m)tr(P(m)P̄(w)ee>)

=
M

∑
m=1

w(m)tr(P̄(w)P(m)Ω).

Therefore,
sup
w∈H

E(e>P(w)P̄(w)e)/ξ ≤ max
1≤m≤M

ξ−1 p̃tr(P(m)Ω)
p→ 0

by Assumption AS 6. Moreover, using Chebyshev’s inequality and Theorem 2 of Whittle
(1960), for any δ > 0, we have

Pr

{
sup
w∈H

∣∣∣(e>P(w)P̄(w)e)−E(e>P(w)P̄(w)e)
∣∣∣ /ξ > δ

}

≤
M

∑
l=1

M

∑
m=1

E

{
[(e>P(l)P̄(w0

m)e)−E(e>P(l)P̄(w0
m)e)]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G
M

∑
l=1

M

∑
m=1

C1

{
n

∑
i=1

n

∑
j=1

(p(l)ij )
2p2

ii(w
0
m)[E(e4G

i )]1/2G[E(e4G
i )]1/2G

}G
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≤ C1 max
1≤j≤n

E(e4G
i )δ−2Gξ−2G p̃2G

M

∑
l=1

M

∑
m=1

{
n

∑
i=1

n

∑
i=1

(p(l)ij )
2

}G

= C2 max
1≤l≤M

δ−2Gξ−2G M2 p̃2G[tr(P(l))]G → 0

by Assumption AS 6, where C1 is a constant and C2 ≡ C1 max1≤i≤n E(e4G
i ) is a bounded

constant according to Assumption AS 2. It follows that

sup
w∈H

(e>P(w)P̄(w)e)/ξ = op(1). (A60)

Noting that E[µ>(I−P(w))P̄(w)(I−P(w))e] = 0, we again use Chebyshev’s inequality
and Theorem 2 of Whittle (1960) to show that

Pr

{
sup
w∈H

∣∣∣µ>(I − P(w))P̄(w)(I − P(w))e
∣∣∣ /ξ > δ

}

≤
M

∑
l=1

M

∑
m=1

E

{
[µ>(I − P(l))P̄(w0

m)(I − P(l))e]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G M
M

∑
m=1

C3

{
n

∑
i=1

γ2
im[E(e2G

i )]1/G

}G

,

where γim is the ith element of max1≤l≤M µ>(I − P(l))P̄(w0
m)(I − P(l)), and C3 is a con-

stant. We now have that

δ−2Gξ−2G M
M

∑
m=1

C3

{
n

∑
i=1

γ2
im[E(e2G

i )]1/G

}G

≤ δ−2Gξ−2G M
M

∑
m=1

C4

{
n

∑
i=1

γ2
im

}G

,

where C4 ≡ C3 max1≤i≤n E(e2G
i ) is a bounded constant according to Assumption AS 2

and

n

∑
i=1

γ2
im = max

1≤l≤M
µ>(I − P(l))P̄(w0

m)(I − P(l))(I − P(l))P̄(w0
m)(I − P(l))µ

≤ max
1≤l≤M

( p̃)2µ>(I − P(l))µ.

Therefore, it holds that

δ−2Gξ−2G
M

∑
m=1

C4

{
n

∑
i=1

γ2
jm

}G

≤ max
1≤l≤M

δ−2Gξ−2GC4 p̃2G M2
{

µ>(I − P(m))µ
}G
→ 0
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by Assumption AS 5. Therefore, we have

sup
w∈H

∣∣∣µ>(I − P(w))P̄(w)(I − P(w))e
∣∣∣ /ξ

p→ 0. (A61)

By (A58), (A59), (A60), and (A61), we have that the first term in (A57)

sup
w∈H

∣∣∣ê(w)>P̄(w)ê(w)− e>P̄(w)e
∣∣∣ /ξ

p→ 0. (A62)

Similarly, for the second term in (A57), using Chebyshev’s inequality and Theorem 2 of
Whittle (1960), for any δ > 0, we have

Pr

{
sup
w∈H

∣∣∣e>P̄(w)e−E
(

e>P̄(w)e
)∣∣∣ /ξ > δ

}

≤
M

∑
m=1

E

{
[e>P̄(w0

m)e−E
(
e>P̄(w0

m)e
)
]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G
M

∑
m=1

C5

{
n

∑
i=1

p2
ii(w

0
m)[E(e4G

i )]1/G

}G

≤ C6 max
1≤j≤n

E(e4G
i )δ−2Gξ−2G

M

∑
m=1

{
n

∑
i=1

p2
ii(w

0
m)

}G

≤ C6δ−2Gξ−2G
M

∑
m=1

[tr[
(

P(w0
m)
)2
]]G

= C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[ inf
1≤i≤M

σ2
i

(
P(w0

m)
)2
]]G

≤ C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[Ω
(

P(w0
m)
)2
]]G

= C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[ΩP(w0
m)]]

G

≤ C6δ−2Gξ−2G
M

∑
m=1

[
R(w0

m)
]G
→ 0,

where C5 is a constant and C6 ≡ C5 max1≤i≤n E(e4G
i ) is a bounded constant according to

Assumption AS 2. The last inequality is due to

R(w0
m) = E(L

(
w0

m

)
) = E

[(
P(m)y− µ

)> (
P(m)y− µ

)]
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= E

[(
P(m) (µ + e)− µ

)> (
P(m) (µ + e)− µ

)]
= E

[((
P(m) − I

)
µ− P(m)e

)> ((
P(m) − I

)
µ− P(m)e

)]
= µ>

(
P(m) − I

)> (
P(m) − I

)
µ− 2E

[
µ>
(

P(m) − I
)>

P(m)e
]
+ E

[
e>P(m)e

]
= µ>

(
P(m) − I

)> (
P(m) − I

)
µ + tr[ΩP(m)]

= µ>
(

P(m) − I
)> (

P(m) − I
)

µ + tr[ΩP(w0
m)]

≥ tr[ΩP(w0
m)],

where P(w0
m) = P(m) and the expectation is conditional on X. Therefore, we have

sup
w∈H

∣∣∣e>P̄(w)e−E
(

e>P̄(w)e
)∣∣∣ /ξ

p→ 0. (A63)

Results of (A62) and (A63) imply that condition (A56) hold. This completes the proof.

D.6 Lasso, Post Model Selection by Lasso, and Double Lasso

Consider the linear regression model:

yi = x>0i β0 +
p

∑
j=1

xjiβ j + ui

for i = 1, ..., n, where x0i is k0 × 1 and xji is scalar for j ≥ 1. Let

β =
[

β>0 , β1, ..., βp

]>
xi =

[
x>0 , x1i, ..., xpi

]>
and define the matrices X and y by stacking observations. The OLS estimate of β is β̂ =
(X>X)−1X>y. Consider a constrained least-squares estimate β̃ subject to the constraint
β1 = β2 = ... = 0. The Lasso estimator shrinks β̂ towards β̃ by solving

β̂
L
= arg min

β

1
2n

n

∑
i=1

(yi − x>i β)2 + λ
p

∑
j=1
|β j|, (A64)

where λ is the tuning parameter that controls the penalty term. In practice, researchers
either assign λ to take on a specific value or use k-fold cross-validation to determine the
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optimal λ. A common choice is to pick λ to minimize 5-fold cross-validation. In general,
the benefits from applying the Lasso in place of OLS exist in settings where either the
number of regressors exceeds the number of observations since it involves shrinkage, or
in settings where the number of parameters is not small relative to the sample size and
some form of regularization is necessary.

The drawback of k-fold cross-validation is its lack of computational efficiency. For ex-
ample, using five-fold cross-validation, the Lasso computation procedure will need to be
carried out over 200 times. This computational inefficiency becomes especially significant
when either the sample size is large or the number of variables is large. Thus, we follow
Belloni and Chernozhukov (2013) and ex ante pick the number of explanatory variables
that will not have their coefficient shrunk to zero, a form of post model selection by Lasso.

The double-lasso regression is similar to the post model selection by Lasso. The goal
is to identify covariates for inclusion in two steps, finding those that predict the depen-
dent variable and those that predict the independent variable of interest. Without loss of
generality, we focus on the case with a single focal independent variable of interest, x0i,
and we want to know how it relates to dependent variable yi. The double-Lasso variable
selection procedure can be carried out as follows:

Step 1. Fit a lasso regression predicting the dependent variable, and keeping track of the
variables with non-zero estimated coefficients:

yi = c1 +
p

∑
j=1

xjiβ j + ui,

where c1 is a constant.

Step 2. Fit a lasso regression predicting the focal independent variable, keeping track of
the variables with non-zero estimated coefficients:

x0i = c2 +
p

∑
j=1

xjiβ j + ui,

where c2 is a constant. If x0i is an effectively randomized treatment, no covariates
should be selected in this step.

Step 3. Fit a linear regression of the dependent variable on the focal independent variable,
including the covariates selected in either of the first two steps:

yi = c3 + x0iβ0 + ∑
k∈A

xkiβk + ui,

where c3 is a constant, A is the union of the variables estimated to have non-zero
coefficients in Steps 1 and 2.
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D.7 More Details on the Econometric Theory

In this section, we prove the asymptotic optimality of Mallows-type model averaging es-
timator under the constraint of screened model set. Our proof is inspired by the work
of Zhang, Yu, Zou, and Liang (2016) who demonstrated the asymptotic optimality of
Kullback-Leibler (KL) type model averaging estimators under screened model set. We
extend their results, allowing their findings to be applied to a broader set of model aver-
aging estimators.

We impose the following condition on the total number of candidate models.

Condition 0 The total number of candidate models M is finite.

We require the total number of candidate models to be finite such that they do not
increase with the sample size. Note that (A48) does not hold with an infinite M.

We then lay out the following conditions that have been verified in the existing litera-
ture such as White (1982).

Condition 1 We have ‖X>µ0‖ = O(n) and ‖X>ε‖ = Op(n1/2).

Condition 2 Conditions that sustain the asymptotic optimality of Mallows-type model averag-
ing estimators (homoskedasticity or heteroskedasticity-robust) under given unscreened candidate
model set in the original paper.

Note that our proof is built upon the conditions that sustain the asymptotic optimality
of Mallows-type model averaging estimators under given unscreened candidate model
set. For example, see either equations (7) and (8) in Wan, Zhang, and Zou (2010), or
assumptions 1 to 3 in Xie (2015), or assumptions 2.1 to 2.7 in Liu and Okui (2013). Condi-
tion 2 corresponds to these suppositions and would change slightly as we adopt different
model averaging estimators.

For each approximation model m, we can define its mean squared error as

L(βm) ≡ (µ(βm)− µ0)
> (µ(βm)− µ0) , (A65)

where µ0 is the true value and µ(βm) = Xβm. Note that in our definition, all βm for
m = 1, ..., M are k × 1 vector, in which certain coefficients are set to 0 if the associated
independent variables are not included in model m. Let β∗m be the coefficient that mini-
mizes equation (A65) such that β∗m = arg min L(βm). The coefficient vector β∗m minimizes
the mean squared error of model m with respect to the true prediction value µ0, which is
different from β̂m that minimizes the sum squared residual (SSR) of model m.
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We define the following averaged coefficients

β̂(w) ≡
M

∑
m=1

wm β̂m and β∗(w) ≡
M

∑
m=1

wmβ∗m

Since µ̂(w) = ∑M
m=1 wmX β̂m = X ∑M

m=1 wm β̂m = X β̂(w), we define µ∗(w) ≡ Xβ∗(w)
and the associated mean squared error can be written as

L∗(w) =
(
µ∗(w)− µ0

)>(
µ∗(w)− µ0

)
. (A66)

We then define the ξn as
ξn = inf

w∈H
L∗(w), (A67)

which is the lowest possible value of L∗(w) under set H. Although the mean squared
error L∗(w) is based on a different averaged coefficients β∗(w), it is closely related to the
L(w) defined in (A52).

We impose the following condition on ξn

Condition 3 nξ−2
n = o(1).

Condition 3 requires that ξn grows at a rate no slower than n1/2. This condition is
identical to the Condition (C.3) of Zhang, Yu, Zou, and Liang (2016) and is also implied
by Conditions (7) and (8) of Ando and Li (2014).

Lemma 1 Given Conditions 1-3, we have

sup
w∈H

|L(w)− L∗(w)|
L∗(w)

= op(1), (A68)

sup
w∈H

|C(w)−∑n
i=1 σ2

i − L∗(w)|
L∗(w)

= op(1). (A69)

Proof of Lemma 1 In line with the Theorem 3.2 of White (1982), under regularity condi-
tions such that A1-A6 of White (1982) hold, it is straightforward to show that β̂m − β∗m =

Op(n−1/2). Therefore,

β̂(w)− β∗(w) =
M

∑
m=1

wm
(

β̂m − β∗m
)
= Op(n−1/2) (A70)

holds uniformly for w ∈ H.

By Taylor expansion and Condition 1,

L∗(w) = L(w) + 2X>
(
X β̂(w)− µ0

)(
β∗(w)− β̂(w)

)
+ op(1)
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= L(w) + Op(n1/2) + op(1),

which implies the order of supw∈H |L(w)− L∗(w)|must be smaller or equal to Op(n1/2).
Given Condition 3, we can obtain (A68).

Moreover, for Mallows-type criterion, we have

C(w) =
(
y− µ̂(w)

)>(y− µ̂(w)
)
+ 2σ2k

= L(w) + ε>ε + 2ε>
(
µ0 − µ̂(w)

)
+ 2σ2k

= L∗(w) +
(

L(w)− L∗(w)
)
+ ε>ε + 2ε>X

(
β0 − β̂(w)

)
+ 2σ2k.

Therefore, by Condition 2,

sup
w∈H
|C(w)− L∗(w)| ≤ sup

w∈H
|L(w)− L∗(w)|+ 2 sup

w∈H
|ε>X

(
β0 − β̂(w)

)
|+

n

∑
i=1

σ2
i + op(1).

Note that the term ∑n
i=1 σ2

i can be simplified as nσ2 if we assume homoskedasticity. Fol-
lowing Condition 1 and results in (A68), we have the order of supw∈H |C(w)−∑n

i=1 σ2
i −

L∗(w)| being smaller than Op(n1/2). Hence, we obtain (A69) and complete the proof.

Once Lemma 1 is established, we can prove Theorem 1 with the following steps.

Proof of Theorem 1 Our proof follows Zhang, Yu, Zou, and Liang (2016). Define a(w) =
C(w)−∑n

i=1 σ2
i − L(w). As demonstrated in Lemma 1, Assumption 1, and Conditions 1

to 3, it is straightforward to show that, as n→ ∞

sup
w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ p→ 0, (A71)

sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣ p→ 0, (A72)

sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣ p→ 1. (A73)

Therefore,

sup
w∈H

∣∣∣∣ L∗(w)

L(w)− vn

∣∣∣∣ ≤
{

1− sup
w∈H

∣∣∣∣L(w)− L∗(w)|
L∗(w)

∣∣∣∣− sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣
}−1

p→ 0, (A74)

as n→ ∞. Then, we expand equation (7) of Theorem 1 as

Pr
{∣∣∣∣ infw∈H L(w)

L(w̃)
− 1
∣∣∣∣ > δ

}
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= Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ

}

= Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ, wn ∈ H̃
}

+Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ, wn /∈ H̃
}

.(A75)

By definitions of conditional and joint probabilities, we have

Right-hand-side of equation (A75)

≤ Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ
∣∣∣wn ∈ H̃

}
Pr(wn ∈ H̃)

+ Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣L(wn) + a(wn)− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣ > δ
∣∣∣wn ∈ H̃

}
Pr(wn ∈ H̃) + Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣L(wn) + a(wn)− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃). (A76)

Following the definition of vn defined in Assumption 1(i), we have

Right-hand-side of (A76)

= Pr
{∣∣∣∣vn + a(wn)− a(w̃)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣ vn

L(w̃)

∣∣∣∣+ ∣∣∣∣ a(wn)

L(w̃)

∣∣∣∣+ ∣∣∣∣ a(w̃)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr

{
sup
w∈H

∣∣∣∣ vn

L(w)

∣∣∣∣+ ∣∣∣∣ a(wn)

infw∈H L(w)

∣∣∣∣+ sup
w∈H

∣∣∣∣ a(w)

L(w)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr

{
sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣+ sup
w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣ L∗(w)

L(w)− vn

∣∣∣∣
+ sup

w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃). (A77)

According to Conditions (A71), (A72), (A73), (A74), and Assumption 1(iii), we obtain that
the right-hand-side of (A77) converge to 0 as n→ ∞. This completes the proof.
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E Additional Details on Data Collection and Related Liter-
ature

The data for this project was initially assembled in conjunction with the IHS Film Consult-
ing unit for a industry driven exercise. Using the IHS annual screen digest, characteristics
of all 178 films that were released in movie theaters and 143 films that were released for
sale on DVD/Blu Ray were first collated. These characteristics were used to determine
which words could be used in hashtags associated with each specific film. A member
of IHS with expertise in the media industry examined this hashtag list and on occasion
supplemented the terms.

Since Janys Analytics was simultaneously measuring the sentiment in all Twitter mes-
sages with current and historical Twitter data at the hourly level for separate projects
with IHS, we used queries with the historical data to extract all messages that involved
the specific terms presented on the hashtag list. The size of the historical data is large and
all Twitter messages at the hourly level are stored in separate datasets on cloud comput-
ers. The queries led us to create daily datasets for all Twitter messages that were extracted
based on terms from the hashtag list. These datasets were subsequently analyzed to pro-
vide our volume and sentiment measures as described below.

At this time, Janys Analytics adapted the Hannak, Anderson, Barrett, Lehmann, Mis-
love, and Riedewald (2012) algorithm to provide IHS with a hourly measure of purchas-
ing intentions on Twitter. We used this algorithm on our extracted subset of Twitter mes-
sages to calculate the sentiment specific to each film. The algorithm involves textual anal-
ysis of movie titles and movie key words that were placed on the hashtag list. In each
Twitter message that mentions a word from the hashtag list, sentiment is calculated by
examining the emotion words and icons that are captured in the same Twitter message.

In total, each of 75,065 unique emotion words and icons that appeared in at least 20
of the universe of tweets between January 1st, 2009 to September 1st, 2009 are given a
specific value that is determined using emotional valence. Emotional valence is a term
frequently used in psychology that refers to the intrinsic attractiveness (positive valence)
or aversiveness (negative valence) of an event, object, or situation. This algorithm calcu-
lates the sentiment index for the film as a weighted average of the sentiment of the scored
words in all of the messages associated with a specific film during a time period is then
calculated. This overall sentiment score can be interpreted as a measure of the propensity
for which there is a positive emotion tweet related to that movie. Last and as discussed
in the main text, since opinions regarding a film likely vary over time with the release of
different marketing devices to both build awareness and increase anticipation, IHS film
consulting unit suggested to calculate sentiment over different time periods.

We use the sentiment data before the release date in equations that forecast the open-
ing weekend box office. After all, reverse causality issues would exist if we include senti-
ment data after the release date. Post box opening tweets are used to measure sentiment
and are only considered in equations that forecast DVD and Blu-Ray sales.
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We should note that the algorithm does not consider the network structure of Twit-
ter. It is likely that there is what psychologists term as belief polarization and research in
computer science has shown that individuals give more weight to messages from those
that are considered strong ties relative to weak ties. That said, there has been substantial
evaluation of the sentiment inference algorithm developed by Janys Analytics for IHS.
Hannak, Anderson, Barrett, Lehmann, Mislove, and Riedewald (2012) compare this sen-
timent inference methodology score to one calculated by users of Amazon Mechanical
Turk and that they are strongly positively correlated with ρ = 0.6525. An additional ad-
vantage is that the sentiment inference algorithm is easy to regularly update to readjust
the frequency at which a specific word is associated with a positive emotion in calculating
the initial values that enter the sentiment calculator to adjust to potential changes in the
Twitter user population.

Briefly, we note the demographics of Twitter users differs markedly from the national
population. Mislove, Jorgensen, Ahn, Onnela, and Rosenquist (2011) document that these
users are predominately male and located in urban areas, but point out these calculations
are based on self-reported profiles. Further, these authors note that the male bias is declin-
ing rapidly. Despite the self-selection of these users, we next discuss why we believe that
this sample of users is likely highly correlated with the characteristics of moviegoers and
DVD purchasers so is relevant to study. After all, research in marketing indicates that
everyday consumers often seek like-minded amateurs’ opinions (for example, Hannak,
Anderson, Barrett, Lehmann, Mislove, and Riedewald (2012) and Holbrook (1999).

We examined monthly reports from iHS Markit, Stastica and the Mintel group that
were initially independently prepared for industry sources during this sampling period.
These reports provide information concerning the characteristics of moviegoers and DVD
purchasers. In October 2013, Mintel group reported survey results suggestion that while
there was not a gender difference in the probability of visiting a cinema in the last six
months, men were roughly 35% more likely (23% vs. 15%) to be categorized as frequent
moviegoers. To be categorized as a frequent moviegoer suggested having paid to watch
at least four movies in the past month. Interestingly, the consulting companies conclude
that higher attendance is not just due to the release of films that target a younger male
demographic, but a larger share is due to theaters’ technology enhancements such as 3D
or IMAX.

Within these reports, a subset of survey respondents claim to be regular Twitter users.
While Twitter does not provide information at a geographic level below self-reported
state, this survey of consulting reports is suggestive that the male bias in Twitter popula-
tion is consistent with heavy moviegoers who were slightly less likely to be deterred from
theaters based on parking, location (or attracted by technology offerings). Across social
media sites, a movie theater’s proximity to home or work only influenced 45% of Twitter
users attendance and the sole outlet with a statistically significant difference was Flickr.9

9Among all survey repondents nearly 57% of suggested that the proximity to a moviegoers’ home or
work is an important consideration; but young men (18-34) were the least likely to consider this a factor.

51



The reports indicate that the characteristics of DVD purchasers were similar to movie-
goers with the sole exception of presence of children in the household,10 which increased
the likelihood of DVD purchases. Unfortunately, profiles on Twitter data do not allow
us to determine if the user has a child. In 2012, box office sales in North America to-
taled $10.8 billion (Germain 2013) whereas retail home movie sales were $18 billion that
included movie purchases and rentals (Orden 2013). Given the size of this market, film
studios need to jointly consider when to release the DVD and the film in theatres. This
topic has attracted significant attention and is reviewed by Ahmed and Sinha (2016) who
additionally present a model of the optimal time to release a DVD following the box office
release.

The pattern of sales for DVDs is different than theatre tickets presenting a second
hurdle for film studios who effectively need to develop a pricing strategy to segment the
market. Mortimer (2007) presents a discussion of the optimal pricing of home movies
retail movie using a theoretical model. There is less empirical evidence on who buys
a DVD and when, ranging from pre-orders to initial release to sales later on when the
DVD is repackaged and offered at discounted prices in big box retailers to also target an
audience seeking a second viewing.11 The majority of empirical research in this market
focuses on renting and not purchases but DVD sales at Amazon.com have been shown to
increase immediately following a public TV broadcast of a film (Smith and Telang, 2009)
or considered how piracy (i.e. via peer-to-peer file sharing networks) may influence retail
movie unit sales (see e.g. Rob and Waldfogel (2007) or Smith and Telang (2010)).

E.1 Related Literature

Our study provides empirical evidence that relates to an interdisciplinary literature that
explores how external information affects purchasing decisions in the movie industry.
We briefly summarize several branches and explain how our findings contribute to this
literature in this section as well as mention directions for further research. Prior to sum-
marizing the extant literature, we wish to stress that few studies (discussed in the pre-
vious section) explore retail movie unit sales in isolation.12 Among studies that focus
on box-office sales, roughly half of them consider gross revenue as the outcome variable;
whereas the remainder including our study aim to forecast opening weekend box office.13

10Industry analysts claim that this is not a surprise since these activities should be considered as com-
plements to each other. Individuals who see movies in the theatre gain knowledge through trailers about
movies that will be later available in the other medium and vice versa.

11Ingnoring this second viewing audience, Hui et al. (2008) suggest that sales for many DVD titles would
follow a exponential-decay pattern. Our data does not consider the later sales if a DVD is rereleased at low
prices in big box retailers.

12As such, we do not discuss this research also in part due to recent trends that have seen the global
Blu-Ray and DVD market decline sharply in size since consumers are either buying digital or on demand
copies of films or have a subscription to an online streaming service such as Netflix.

13We do not consider studies that consider the length of a movieâeTMs run in theatres as the outcome
of interest, beyond noting that Moul (2007) considered the consequences of hetereskesdasticity with this
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We chose this outcome since opening weekend box office is well-known to be crucial to
the industry and the results are frequently reported in the popular press. Further, Einav
(2007) reports that first week revenues make up to 40% of a film’s total box office sales.

E.1.1 Initial Econometric Models and Investigation of Expert Reviews

The majority of published research focuses heavily on understanding what characteristics
of films are associated with their earnings, with less attention paid to developing models
for forecasting. Empirical research that investigate the determinants of box office rev-
enues within the economics literature date back to Prag and Casavant (1994), who used
a large sample of 652 films released in the US market. Their main findings were that ad-
vertising expenditures were positively related to total box office earnings, whereas films
that were classified as dramas had a negative association. Numerous subsequent studies
suggest a role played by the explanatory variables that were suggested by the IHS-Markit
Film unit to include as potential predictors and controls in the MTV models. The im-
portance of these control variables is grounded by evidence in the literature as Basuroy,
Chatterjee, and Ravid (2003) finds that motion picture association rating has a strong re-
lationship with revenue, an effect Terry, Terry, and De’Armond (2011) postulate is due
to the potential audience size. Related to audience size is screens, that is unsurprisingly
positively correlated with earnings (see e.g. Neelamegham and Chintagunta 1999; Ba-
suroy, Chatterjee, and Ravid 2003; Moon, Bergey, and Iacobucci 2010). Film genre has
been shown to also correlate with revenue as Dahl and DellaVigna (2008) and Prieto-
Rodriguez, Gutierrez-Navratil, and Ateca-Amestoy (2014) report the action and violence
genres yield better performance.

Thus, we postulate that forecasting models of film genre may differ in their speci-
fication by genre. Specification uncertainty provides additional motivation for allow-
ing model uncertainty with either econometric or machine learning strategies. In other
words, if the models that are frequently developed in the literature were used to forecast
revenue for the film industry, they may neglect important parameter heterogeneity by
film genre. Using more flexible machine learning algorithms than Lehrer and Xie (2017)
we would anticipate significant gains in forecast accuracy since these algorithms capture
many dimensions of this heterogeneity that is due to neglected non-linearities.

In marketing, the concept of word of mouth (WOM) is used to define the act of con-
sumers providing information about goods, services, brands, or companies to other con-
sumers. WOM is often referred to as a form of social learning or as an endogenous peer

outcome. Specifically, Moul (2007) investigates the word-of-mouth effect on individual film demand using
a nested logit model, where word-of-mouth presents through the heteroskedasticity and serial correlation
in the error term of the model. The results suggest that word of-mouth can explain roughly i) 38% of the
variance in the unobservables, and ii) 10% of variation in consumer expectations. This study provides an
additional model-based rationale for why heteroskedasticity needs to be considered when conducting fore-
casts for the film industry. In our study and evidence surveyed below, word of mouth is directly measured
by the respective authors and is often the focus of interest.
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effect in the economics literature. The potential role of WOM when forecasting for the
film industry was initially considered in Hirschman and Pieros (1985) who presented
a counter-intuitive result that positive criticism is negatively correlated with gross box
office success. This finding did not replicate with data drawn in later periods and sub-
sequent research repeatedly finds that expert reviews have a positive and significant ef-
fect on consumption (see e.g. Eliashberg and Shugan 1997; Chintagunta, Gopinath, and
Venkataraman 2010; Moon, Bergey, and Iacobucci 2010, among others).

Research on whether WOM influences film revenue also highlight the potential of
specification uncertainty from potentially neglecting important parameter heterogeneity.
For example, Koschat (2012) finds evidence of heterogeneous effects of the valence of crit-
ics’ reviewer ratings on opening weekend box office by film genre. Similarly, Gemser,
Oostrum, and Leenders (2007) compares the effect of the valence and size of critical re-
views in Dutch newspapers on art-house films versus mainstream films. They find that
art house films benefit from having more reviews and suggest that coverage of any sort
is better than no coverage at all. This finding mirrors some of our own presented in table
7 of the main text that the volume of WOM matters and in a differential manner by film
budget.

The timing of when expert reviews appear does vary, in part since not every film critic
is able to see a specific movie at the same point in time. This variation in when reviews
are reported was considered in studies that forecast gross revenue by examining if there
were large gains in including covariates that captured the valence in critics’ reviews that
occurred after a film’s release. Specifically, Neelamegham and Chintagunta (1999) use
Bayesian methods and demonstrated that their model which included post-release WOM
surpassed the forecast accuracy of the model of Sawhney and Eliashberg (1996) that only
used pre-release WOM information among the predictors, by 45 - 71%.

Despite this gain in forecast accuracy, in our paper we use pre-release WOM measures
only. Post-theatre release WOM metrics can be used to forecast retail movie unit sales. We
seek to avoid endogeneity concerns that arise from reverse causality between box-office
(and retail movie unit sales) revenue and reviews. Each variable that we consider as a po-
tential predictor including the measures of WOM, budget and screens are predetermined.
To the best of our knowledge, Holbrook and Addis (2008) were the first to both note this
endogeneity concern in the literature on WOM from expert reviewers on movie revenue
and propose estimating a triangular system of equations.14 More recently, Lee, Hosana-
gar, and Tan (2015) provide additional evidence that users’ ratings of the quality of a
movie are influenced by prior ratings of online user groups in a heterogeneous manner
that depends on the movie’s popularity. To overcome challenges posed by the endogene-
ity of social influence on user’s reviews that may also explain user’s purchasing decision,
we follow the standard in the econometrics literature of using predetermined variables
when estimating a peer effect given its link to WOM discussed above.

14Few studies deal with the endogeneity of WOM and later in this section we discuss Chintagunta,
Gopinath, and Venkataraman (2010) which is an exception.
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E.1.2 Incorporating Social Media in Forecasting Models

Over the last 15 years, research on the effects of WOM on movie-going has changed its
focus from expert reviews to consider how qualitative aspect of online buzz (i.e., how
customers perceive or feel about a product) influences the consumer decision-making
process. This qualitative aspect is frequently referred to as electronic word of mouth
(eWOM) and include Internet communications ranging from user reviews, tweets, blog
posts, ”likes”, ”pins” images and video testimonials. In practice, researchers operational-
ized eWOM in extant academic literature in multiple ways that we argue capture different
aspects of their decision making process. In our study, we distinguish among the follow-
ing eWOM metrics: volume and sentiment (also commonly referred to as valence). Re-
cently, Houston, Kupfer, Hennig-Thurau, and Spann (2018) argue that valence measures
prior to film release capture pre-release consumer buzz that proxies the extent to which
consumers’ are interested in a new product. This is argued to be a different phenomena
than a valence measure post film release reinforcing our need to use a predetermined
measure of eWOM as a predictor.

The majority of research studies that measure eWOM do so from a single source,
such as a movie review site such as Yahoo!Movie (see e.g. Chintagunta, Gopinath, and
Venkataraman 2010; Liu 2006), an online forum of blog posts (e.g. Gopinath, Chinta-
gunta, and Venkataraman 2013), Twitter (see e.g. Rui, Liu, and Whinston 2011; Kaplan
2012)15 or a single firm (Sonnier, McAlister, and Rutz, 2011). Results show that various
social media signals ranging from online review and rating systems to sentiment analy-
sis have a significant predictive value to predict performance in the box office. For ex-
ample, Vujic̀ and Zhang (2018) find that negative sentiment in eWOM is damaging to
box office revenues. Chakravarty, Liu, and Mazumdar (2010) find professional movie
reviews and popular word-of-mouth are related to consumers’ frequency of movie at-
tendance. Similarly, Gopinath, Chintagunta, and Venkataraman (2013) report that release
day performance of a movie is impacted most by prerelease blog volume and advertising,
whereas post-release performance is influenced by post-release blog valence and adver-
tising. eWOM on social media sites ranging from Twitter and Weibo predicts more ticket
sales (see e.g. Rui, Liu, and Whinston 2011; Ding, Cheng, Duan, and Jin 2016; Vujic̀ and
Zhang 2018; among others). Last, as an alternative metric of eWOM, studies have found
that the amount of specific discussion pre-release on Twitter (Chintagunta, Gopinath, and
Venkataraman, 2010) and Lehrer and Xie (2017) as well as the number of followers of an
actor on Twitter (Vosoughi, Mohsenvand, and Roy, 2017) has predictive power for the
movie success on box office.

In the majority of studies summarized above measures of WOM and eWOM are treated
as exogenous. As noted above, to sidestep endogeneity concerns we use a strategy of us-
ing a predetermined measure that is frequently used in the economics literature focused

15With Twitter data as a covariate, Kaplan (2012) forecasts gross revenue, whereas our interest is to predict
opening week earnings.
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on the estimation of peer effects. An alternative empirical strategy that is also when esti-
mating peer effects is to use instrumental variables, where the instruments are measures
of peer characteristics and not oneself. Chintagunta, Gopinath, and Venkataraman (2010)
follow such an approach and use measures such as average critic score for competing
movies in the prior week, the average star power of competing movies in the previous
week and the average proportion of movies of the same genre as the focal movie playing
in the prior week. Each of these instruments is predetermined and in the empirical mi-
croeconomics literature the plausibility of the exclusion restriction assumption of instru-
mental variables is frequently debated. Since our focus is not on estimating parameters
but on conducting forecasts,16 we treat our eWOM measures as exogenous.

A branch of the marketing literature explores how to better incorporate pre-release
buzz data in forecasting models and both Bandari, Asur, and Huberman (2012) and Xiong
and Bharadwaj (2014) draw a distinction between cumulative measures versus including
measures to capture buzz dynamics. While our analysis due to endogeneity concerns
discussed above only considers pre-release measures defined over ad-hoc intervals in
the pre-release period, F-tests of the coefficients on these variables in the GUM model
presented in appendix table A5 would reject any restriction that these variables had an
identical effect. In addition, the results in table 7 suggest there is further heterogeneity by
movie type across the budget distribution. This is not a surprise as one of the motivations
for our study is that different types of people will likely create pre-release buzz for differ-
ent types of films.17 Taken together, our results suggest that researchers need to be quite
flexible in how they include pre-release buzz data both as there are many dimensions of
heterogeneity and many machine learning algorithms can help identify these non-linear
interactions between observed variables.

Many of the findings of the effects of eWOM on box office outcomes summarized
above appear to mirror the results discussed in the previous subsection on the positive
effects of WOM in expert reviews on these outcomes. Similarly, research suggests the
possibility of neglected parameter heterogeneity in econometric models since studies the
explored whether there are heterogeneous effects of eWOM by either film genre or movie
market segmented into mainstream versus non-mainstream films (Yang, Hu, Winer, As-
sael, and Chen, 2012) have found evidence of significant differences. For example, Yang,
Hu, Winer, Assael, and Chen (2012) provide evidence that the effect of eWOM volume on
box office revenue is greater for mainstream movies and suggest this arises since films are

16To the best of our knowledge, Dellarocas, Zhang, and Awad (2007) were the first to show using a
modified Bass diffusion model with data from the film industry that adding online movie ratings to their
revenue-forecasting model significantly improves the model’s predictive power.

17This finding is not unique to our valence and volume measures. Ding, Cheng, Duan, and Jin (2016) find
with another valence measure, the pre-release âeœlikeâe on Facebook has a significantly positive impact
on box office performance, whose effect increases closer to the release date. Similarly, Mestyán, Yasseri, and
Kertész (2013) finds that the impact of online movie review sentiment on gross revenue becomes statistically
significant three weeks after release. Specifically, 1-star review have a larger significant decline in revenue
relative to the significant gains from 5-star reviews; whereas 2âe“4 star reviews have no significant impact.
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experience goods with uncertain quality, eWOM volume provides a proxy for the cred-
ibility of the quality of the product, thereby increasing their confidence in attendance.
Our empirical results appear consistent with this interpretation and as discussed in the
introduction of the main text, there are several plausible rationales for why one should
anticipate specification uncertainty with eWOM data.

The majority of studies outlined above measure eWOM from a single social network
platform or in case of multiple platforms,18 treat each platform as a distinct silo (Shruti,
Roy, and Zeng, 2014). Both Tsao (2014) and Basuroy and Ravid (2014) contrast the role
played by movie reviews by professional critics and ordinary consumers. They reach
conflicting results where Tsao (2014) finds that without considering an interaction effect,
potential moviegoers attach greater importance to consumer reviews than they do criti-
cal reviews. Consistent with Vujic̀ and Zhang (2018) the influence of negative consumer
reviews on movie selection is stronger than that of positive consumer reviews. In con-
trast, Basuroy and Ravid (2014) find that internet reviews matter, but expert opinions
carry more weight. The difference in these findings likely arises since Basuroy and Ravid
(2014) follow Chintagunta, Gopinath, and Venkataraman (2010) and treat eWOM as en-
dogenous and address endogeneity in their work which may explain the different results.
Among studies that contrasted eWOM from Twitter, YouTube, Yahoo! Movies and blogs
on box office revenue, Baek, Oh, Yang, and Ahn (2017) showed that Twitter is the most
influential platform in the initial stages of release, while Yahoo! Movies and blogs were
more influential in the later stages.19 Thus, for the outcome under consideration, we are
using the most relevant source for eWOM .

In summary, while there has been some attempt to examine the role of eWOM on a
movie’s box office performance, there is a lack of consensus on factors affecting the movie
box office performance. There is clear need for future work to relax the assumption that
eWOM measures from alternative social media platforms should be treated independent
of each other. However, findings often differ across studies for other reasons on how
eWOM is measured.

E.1.3 Differences Across Studies Due to Machine Learning Algorithms

Machine learning algorithms are used in our study to first code sentiment in social media
messages and subsequently to undertake forecasts. How messages/ reviews are coded
and aggregated varies sharply across papers. For example, Liu (2006) simply manually
coded each post as positive, negative, or neutral; whereas Lehrer and Xie (2017) used an
algorithm due to Hannak, Anderson, Barrett, Lehmann, Mislove, and Riedewald (2012)
that created a continuous measure of the emotion content of each message. Ravi (2015)

18Schweidel and Moe (2014) do not explore the film industry but provide evidence that consumers’ sen-
timents towards a particular brand does differ across different social media platforms.

19Evidence from Shruti, Roy, and Zeng (2014) cast doubt on the influence of Facebook “likes” on movie
revenue.
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points out that an important limitation of the algorithms frequently used for sentiment
analysis is they struggle with irony and sarcasm. Recent advances in the natural process-
ing literature use deep learning to reduce this concern. Rui, Liu, and Whinston (2011)
differ from earlier studies by weighting each eWOM in a tweet by the number of follow-
ers the author of each WOM message.20

In either case, the aggregated valence measure should be viewed as being measured
with error. We note that our interest is strictly in conducting forecasts and this with re-
gression models any bias in measuring sentiment would be classical in nature.21

Based on guidance from the IHS-Markit film consulting unit we were careful in using
data in our sample to avoid periods of time where bots or fake reviews were prevalent
on Twitter. This provides a small window to explore the effect of eWOM on Twitter as
earlier periods were associated with very few users and later periods require one to de-
velop algorithms to identify fake reviews. In the data science literature, there is evidence
from Mayzlin, Dover, and Chevalier (2014) who contrast hotel reviews on Expedia.com
and TripAdvisor.com, that biased user reviews impede review usefulness.22 We note this
as a direction for further research to also consider possibly disentangling the effect of
eWOM from actual users versus so-called bots who are hypothesized to spread biased
information online.

Turning to forecasting strategies, Kim, Hong, and Kang (2015) as well as Lehrer and
Xie (2017) each find that the utilization of the combination of data from social media
and machine learning-based algorithms made noticeable improvements to forecasting
accuracy. Similarly Hur, Kang, and Cho (2016) illustrate the benefits of using both support
vector regression, neural networks and a regression tree algorithm relative to multiple
regression with respect to forecast accuracy in the Korean film industry.23 In general, the
sample sizes in these forecasting exercises as well as the studies reviewed in the prior
subsection are small and generally consist of 150-200 films.24

Our study considers time-varying measures of two eWOM measures calculated from

20Recent work by Lehrer, Xie, and Zeng (2020) propose a new method on how to weight messages when
aggregating social media data based on the time messages were posted. This strategy is shown to offer an
advantage of handling parameter instability that may reflect jumps, which can introduce asymptotic bias
to the averaging estimate.

21Thus, in a regression coefficient on any sentiment variables would be biased towards zero in absolute
value and statistical insignificance. Thus, all evidence on the importance of sentiment likely reflects a lower
bound but as shown in Tables A9 and A24, this covariate still improves forecast accuracy and is often chosen
by the Lasso as one of the most important variables to forecast revenue.

22The idea is that there are no restrictions on who can post a review on TripAdvisor whereas Expedia
makes it more challenging for fake reviewers to be uploaded.

23Many other papers explore a single machine learning algorithm, For example, when developing a pre-
dictive algorithm for motion picture revenues, Antipov and Pokryshevskaya (2017) and Zhou, Zhang, and
Yi (2017) respectively only use a random forest-based model or deep neural networks.

24Briefly, Liu (2006), Chintagunta, Gopinath, and Venkataraman (2010), Elberse and Eliashberg (2003),
Vujic̀ and Zhang (2018) uses samples of 40, 148, 164, and 158 movies respectively; each collected over
different time periods.
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social media data as opposed to a single sentiment measure obtained from reviews and
introduces hybrid strategies that combine econometrics with machine learning to conduct
forecasts. Most importantly, we also explore a fuller suite of machine learning algorithms
and provide insights on the trade-offs of using algorithms with the small samples used
in these forecasting exercises. In the next subsection, we elaborate on this point and re-
state our main contribution to the empirical literature that investigates the association of
characteristics of movies with film revenue.

E.1.4 Clarifying our Contributions to the Literature on the Role of eWOM on Movie
Revenue and Forecasting Outcomes for Hollywood

In summary, research on forecasting film revenue tends to find that different eWOM mea-
sures are important predictors, irrespective of how they are measured. There is increased
value to allowing for time-varying eWOM measures and substantial evidence of hetero-
geneity in the effects of eWOM predictors on the outcomes being considered. This het-
erogeneity was also exhibited in the earlier literature that considered WOM measures.
The idea that WOM is reflected by heteroskedasticity underlies the empirical strategy
used in Moul (2007) but is not considered in prior work that undertook forecasts. This
prior work often found gains from using machine learning strategies to undertake these
forecasts relative to econometric approaches. However, a full suite of machine learning
algorithms was not considered and the majority of work did not illustrate the robustness
of their findings to the choice of hyperparameters. In addition, the effect on retail movie
unit sales upon initial release was rarely considered.

Our study considers heteroskedatic data and introduces new hybrid strategies for this
setting with both revenue outcomes. Our empirical results confirm earlier work on ini-
tial box office earnings by illustrating heterogeneous effects of WOM/eWOM and can
provide an explanation for why there are large gains with machine learning approaches.
This will further highlight the value of SVRLS and MASVRLS since there will be even more
covariates (or features) to consider as potential predictors and this estimator can accom-
modate such settings and allow for a very rich set of potential non-linear interactions. In
section F.21 of the appendix, we discuss and illustrate how machine learning strategies
can suggest the type of nonlinearities to include in linear econometric models to generate
new insights on which characteristics explain film revenue. Last, as discussed in the con-
cluding section of the main text, future work can also consider richer measures of eWOM
from multiple social media platforms as well as richer data from a single social media
platform data such as Twitter.

F More Empirical Results

This appendix consists of numerous subsections that provide further analyses and ro-
bustness checks of our main findings. OLS estimates of the GUM model are provided
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in subsection F.1. Breusch-Pagan tests are provided in Table A5 show strong evidence of
heteroskedasticity for both open box office and movie unit sales.

The first piece of evidence pertaining to using two social media measures versus one
is obtained by comparing estimates across tables in subsection F.3 (see tables A7 and A8).
Further evidence is shown in subsection F.17 and tables A9 and A23 for the proposed
MAB and MASVRLS strategies. In subsection F.2 and F.6 we provide evidence of the
relative prediction efficiency for double Lasso and Lasso based Strategies respectively. As
observed in tables A6 and A12 – A14, the benchmark HRCp outperforms all Lasso based
methods considered. Finally, the evidence contrasting tables A12 – A14 present further
evidence for why two social media measures are preferred to either one.

In subsection F.4, a Monte Carlo study is used to shed further light on the relative per-
formance of ARMS and ARMSH under different scenarios related to what is the source
of heteroskedasticity. Related, in subsection F.7 we present additional analyses that con-
trasts which models (and their contents) are selected by ARMS to ARMSH. These sections
explain when differences between these methods could occur and why in our application,
there were many similarities. Related to F.7, in subsection F.5 we present weights of, and
contents of the top 5 models selected by the HRCp estimator. These results continue to
show that in practice, the model averaging estimator gives lots of weight to very few of all
the potential models and is consistent with other applications of these methods including
in policy oriented applications such as crime deterrence (Durlauf, Navarro, and Rivers,
2016).

In subsection F.8, we provide evidence that even when we restrict machine learning
strategies to use the identical set of predictors as model screening choices made for model
averaging that recursive partitioning methods yield more accurate forecasts. This shows
that much of the gains we observed in our application come from the restrictiveness of
the linear model and that additional gains can still be obtained by allowing for model un-
certainty and considering that the data is heteroskedastic. Subsection F.9 provides formal
evidence that the proposed MASVRLS method significantly outperforms other forecast-
ing strategies considered in the main text (tables 3 – 5).

Subsection F.10 considers adding a model averaging flavor to a single regression tree
(MART). For space considerations, we did not include this in the main text since as seen
in the single figure A4 presented in subsection F.10, the MART method is outperformed
by both MAB and MARF by a large margin in both heteroskedasticity scenarios. Thus,
similar to the discussion in the statistical learning literature that forecasts from RT are
unreliable and both bagging and random forest present improvement, we advocate only
adding model averaging to strategies that used bagging or random forest to create sub-
groups.

As is well known, a model that fits well in sample may not be good for forecasting—a
model may fit well in-sample, only to turn out to be useless in prediction. Consequently,
it is common practice to select the model based on pseudo-out-of-sample fit from a se-
quence of recursive or rolling predictions. In subsection F.11, we compute the centered
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R2 of the main exercise, when applying the CART algorithm to the 10,001 training sets
on the GUM (with twitter variable) and MTV (without twitter variable). We report the
mean, median, 2.5% quantile, and 97.5% quantile of the R2s under different values of nE

for both open box office and movie unit sales scenarios. We note that GUM yields higher
R2 than MTV in all cases. Note the p-values of F tests of their inclusion of Twitter variable
are always below 0.01 even at the 2.5 percentile. These results continue to illustrate the
importance of social media data in our forecasting exercises.

Subsection F.12 describes the selected parameters by the OLS-post-Lasso method. These
results as described in a footnote in the main text reinforce the value of social media data
in our application.

The table in subsection F.13 revisits the subset of data initially analyzed in Lehrer
and Xie (2017). The authors placed a strong restriction on film budget, thereby limiting
the amount of heterogeneity in their data. Only dimension reduction and econometric
approaches were considered in that paper. We revisit the data using the off the shelf
statistical learning methods of bagging and random forest with different numbers of ex-
planatory variables considered. These methods do not assume a functional form and
achieve large gains in accuracy relative to the benchmark and best performing estimator
reported in Lehrer and Xie (2017). This analysis led us to consider a larger set of machine
learning strategies in the main text, where we additionally relax the sampling restriction
to include all films released over that sample period.

Subsection F.14 presents the results of the forecasting experiment in terms of absolute
units of the loss function, as opposed of degree of loss to relative to the chosen baseline
estimator. These results are measured in millions of dollars and the general finding is
that the statistical learning methods generally reduce the variation relative to econometric
approaches. The addition of model averaging in the leaves does not lead to further gains
in efficiency but achieves higher MSFE and MAFE by reducing the bias. These results
show that statistical learning methods are less variable and the incorporation of model
averaging in place of the local constant model achieves gains by increasing the accuracy
of forecasts. These results appear consistent with the patterns illustrated in the main text
when discussing Figure 1.

In subsection F.15 we demonstrate that forecasts with HBART become more accu-
rate as the number of bootstrapped samples increase, whereas the gains from MARF are
smaller. This section provides a sense of the computational power needed to benefit from
HBART. While the two algorithms rely on different splitting rules and tuning parameters,
this section shows that the performance of HBART in our application also relies on setting
the number of bootstrapped samples to be larger.

In Appendix F.16, we use MASVRLS to better understand how social media should be
accounted for.

To motivate the exercise in appendix F.17, theorems 4.3 and 4.4 of Scornet (2017)
demonstrate that the consistency of random forests with binary outcome is valid for any
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value of the number of covariates to split. This may seem surprising since with few co-
variates, the computational cost of the procedure is small compared to RT but the split-
ting direction may deviate sharply from the best splitting direction. Probst, Boulesteix,
and Bischl (2019) provide evidence among the hyperparameters to tune in an applica-
tion with 38 datasets that this tuning this parameter provides the biggest average im-
provement in forecasting among all possible RF hyperparameters. Our findings are that
a moderate number of covariates is needed for forecasting open box office but a larger
number is needed for retail movie unit sales. This suggests the default may be small with
RF and MARF for retail movie unit sales, but the performance gain is minimal relative to
using MASVRLS with defaults in our application. Most importantly, we do not find large
differences in the results as the number of variables changes sharply.

In appendix F.18 attention is paid to different kernels to be used with SVR and SVRLS.
Probst and Boulesteix (2018) suggest that there is more benefits from changing hyper-
parameters of SVM algorithms than random forest. This tuning exercise allows us to
examine model averaging weights that treat the error as homoskedastic using the Mal-
low’s criterion (equation A40) and using the HPMA with the heteroskedastic error (equa-
tion A41). The findings are presented in Figure A9 and show that the loss function of
SVRLS is preferred over SVR and that kernels that allow for more nonlinearities provide
larger gains. As with the model selection results, we find very small gains when using
HPMA instead of the Mallow’s criterion reinforcing the largest gains come from neglected
nonlinearities that lead to a heteroskedastic error with linear econometric models. Last,
appendix F.19 presents the most comprehensive examination of different hyperparame-
ter choices for alternative machine learning algorithms. We do not find large differences
to the main results as hyperparameters change suggesting that the default values of the
hyperparameters specified in software packages work reasonably well. We view these ex-
ercises as demonstrating the robustness of the main findings and stress a caveat that our
investigation was not exhaustive so there remains a possibility that there are particular
specific combinations of hyperparameters with each algorithm that may lead to changes
in the ordering of forecast accuracy in the empirical horserace presented in the text.

Appendix F.20 presents estimates of a RT for box office revenue and illustrates how to
incorporate the suggested nonlinearities into an estimable model. This allows a researcher
to conduct statistical inference and examine marginal effects to supplement the analysis
of variable importance in Tables 6 and 7 of the main text. In this section, we also discuss
alternative machine learning strategies that empirical researchers could undertake to un-
derstand how covariates explain film revenue outcomes and contribute to the literature
on how eWOM affects film outcomes surveyed in Appendix E.1. The results suggest that
there are statistically significant threshold effects in the social media measures that are
measured in the week prior to box office opening on film revenue. While the results find
evidence for numerous significant nonlinear relationships between specific explanatory
variables and film revenue, they also cast doubt on the importance of complex interac-
tions between non-linear terms of the explanatory variables in our application.

Appendix F.21 presents the main results illustrated in Figures 4 and 5 of the main text
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in tabular form. A brief discussion that mirrors the main text is provided so the subsection
is self-contained.
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F.1 OLS Estimates of the GUM Model

Table A5: OLS Estimates of the Generalized Unrestricted Model

Variable Open Box Office Movie Unit Sales
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -1.6895 3.0838 -0.0622 0.1194
Adventure 4.6542 3.7732 -0.0967 0.1588
Animation -1.9354 5.6046 0.8167* 0.3609
Biography 0.1229 4.2324 -0.0109 0.2015
Comedy -0.9595 3.7382 -0.1287 0.1859
Crime 2.6461 2.7335 -0.0931 0.1052
Drama -1.7884 3.6083 0.0139 0.1092
Family 2.6236 6.7679 -0.4118 0.3503
Fantasy 12.8881* 4.9159 0.5634 0.3937
Horror 3.0486 2.4376 -0.3655* 0.1441
Mystery 3.3377 2.4852 0.1414 0.1243
Romance -2.5919 3.3696 -0.0986 0.0921
Sci-Fi -0.3705 2.6569 0.0336 0.1391
Thriller 0.8643 2.9379 0.0306 0.1301
Rating
PG 2.8901 5.4757 -0.6290 0.4196
PG13 1.8691 6.8517 -0.8369 0.5112
R 2.6378 6.6841 -0.7490 0.4964
Core Parameters
Budget 0.1182* 0.0399 0.0035* 0.0016
Weeks 0.3738 0.2768 0.0447* 0.0109
Screens 6.1694* 1.3899 0.3215* 0.0526
Sentiment
T-21/-27 -0.1570 0.6610 -0.0148 0.0241
T-14/-20 -0.9835 0.9393 -0.0040 0.0304
T-7/-13 -1.2435 1.0695 0.1802 0.1104
T-4/-6 0.2277 1.1775 -0.1708* 0.0842
T-1/-3 2.5070* 0.7509 -0.0422 0.0839
T+0 0.2172* 0.0864
T+1/+7 -0.0927* 0.0399
T+8/+14 0.0212 0.0234
T+15/+21 0.0085 0.0291
T+22/+28 -0.0808 0.1072
Volume
T-21/-27 -97.5186* 31.6624 -1.6863 0.9608
T-14/-20 19.4109 38.6929 0.0724 1.1598
T-7/-13 -45.2885 30.9011 -1.8770 1.1417
T-4/-6 86.2881* 27.2008 2.5302* 0.7184
T-1/-3 18.9664* 5.1687 -1.2437* 0.4167
T+0 0.4423* 0.1064
T+1/+7 -0.2006 0.2404
T+8/+14 1.1195 0.9779
T+15/+21 0.4945 0.6281
T+22/+28 -0.3414 0.3104
Breusch-Pagan Statistic 249.9485 207.3698
Breusch-Pagan p-value <0.0001 <0.0001
R-square 0.7973 0.8016

Note: * indicates the associated variable is significant at 5% level.
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F.2 Performance of Double-Lasso Strategy in Simulation Experiment

Table A6: Comparing Hetero-robust and Homo-efficient Model Screening Methods

nE OLS10 OLS12 OLS15 HRCp
10 HRCp

12 HRCp
15 Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.4388 1.5229 1.1787 1.4181 1.5075 1.1564 1.0000
20 1.6213 1.6090 1.2135 1.5898 1.5814 1.1854 1.0000
30 1.7625 1.6869 1.2597 1.7322 1.6714 1.2344 1.0000
40 1.8172 1.7028 1.2622 1.7745 1.6768 1.2548 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2064 1.2131 1.0778 1.1962 1.2054 1.0680 1.0000
20 1.2356 1.2208 1.0880 1.2262 1.2173 1.0841 1.0000
30 1.2420 1.2273 1.0882 1.2331 1.2192 1.0833 1.0000
40 1.2475 1.2330 1.0845 1.2360 1.2187 1.0766 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.3855 1.4254 1.4699 1.3645 1.3892 1.4364 1.0000
20 1.3562 1.3960 1.4022 1.3321 1.3651 1.3730 1.0000
30 1.2831 1.3096 1.3088 1.2733 1.2909 1.2821 1.0000
40 1.1793 1.2094 1.2499 1.1573 1.1807 1.2210 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2604 1.2731 1.2840 1.2514 1.2616 1.2683 1.0000
20 1.2345 1.2541 1.2626 1.2273 1.2365 1.2472 1.0000
30 1.2014 1.2190 1.2314 1.1920 1.2053 1.2169 1.0000
40 1.1682 1.1878 1.2051 1.1565 1.1706 1.1880 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of
the table. The remaining entries provide the ratio of the degree of the respective
forecast error metric of the estimator using specific estimation approach denoted
in the column relative to results using the HRCp method presented in the last
column. OLSq and HRCp

q stand for OLS and HRCp with q number of covariates
selected by the Lasso.
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F.3 Additional Evidence on the Importance of Social Media Data

Table A7: OLS Estimates of Models with Sentiment Only

Variable Open Box Movie Unit
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -11.8297 5.1756 -0.5991 0.2118
Adventure 1.8903 9.0801 -0.2221 0.3721
Animation -8.6157 7.2188 0.3618 0.3987
Biography -10.6777 7.3202 -0.3815 0.3079
Comedy -6.1906 4.4094 -0.3875 0.2136
Crime 5.6338 3.7323 0.1658 0.1751
Drama -4.3020 4.9879 -0.2661 0.1924
Family -1.3797 8.0709 -0.3123 0.3741
Fantasy 19.2129 10.5968 0.8570 0.4906
Horror -0.8574 4.6042 -0.6504 0.2190
Mystery -4.1597 3.1965 -0.1284 0.1412
Romance -1.3851 4.4953 0.1232 0.1784
Sci-Fi 0.6611 6.1694 0.1187 0.2989
Thriller 1.4062 5.2588 0.0971 0.2140
Rating
PG 7.6872 7.0093 -1.0293 0.4639
PG13 21.6049 10.7996 -0.5286 0.5447
R 19.5326 10.5227 -0.5796 0.5433
Core Parameters
Budget 0.1525 0.0827 0.0064 0.0033
Weeks 1.3267 0.5057 0.0943 0.0204
Screens 13.8708 2.9586 0.5949 0.1233
Sentiment
T-21/-27 0.9289 0.7021 -0.0195 0.0292
T-14/-20 -0.7583 0.7503 0.0373 0.0366
T-7/-13 -1.1656 1.6137 0.3103 0.1303
T-4/-6 0.9664 2.1090 -0.0694 0.1113
T-1/-3 -0.1460 1.1729 -0.0401 0.1418
T+0 0.1238 0.1668
T+1/+7 -0.1016 0.0603
T+8/+14 0.0649 0.0372
T+15/+21 -0.0992 0.0411
T+22/+28 -0.1859 0.1286
R-square 0.5322 0.6488

Note: * indicates the associated variable is significant at 5% level.
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Table A8: OLS Estimates of Models with Volume Only

Variable Open Box Movie Unit
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -1.7845 3.0495 -0.1049 0.1163
Adventure 4.8425 3.7630 0.0347 0.1508
Animation -3.8178 5.2420 0.6189 0.3508
Biography 0.5099 4.4590 -0.1050 0.2038
Comedy -0.5934 3.8404 -0.1896 0.1556
Crime 3.1958 2.6371 0.0043 0.0961
Drama -1.9479 3.5767 -0.0280 0.1078
Family 3.6903 6.5546 -0.3090 0.3424
Fantasy 13.3327 4.9812 0.5544 0.3864
Horror 3.6698 2.5120 -0.2299 0.1305
Mystery 2.6945 2.5712 -0.0145 0.1100
Romance -2.5929 3.4036 -0.0859 0.0909
Sci-Fi -0.5145 2.7094 0.0015 0.1279
Thriller 0.6968 3.0682 -0.0407 0.1181
Rating
PG 1.8990 5.2023 -0.3739 0.3662
PG13 1.6943 6.7034 -0.5650 0.4418
R 2.3396 6.4815 -0.5206 0.4475
Core Parameters
Budget 0.1142 0.0396 0.0029 0.0016
Weeks 0.4335 0.2705 0.0424 0.0114
Screens 6.9067 1.4856 0.3422 0.0557
Volume
T-21/-27 -97.6733 30.6043 -1.5188 0.9072
T-14/-20 21.1375 36.7023 -0.0649 1.1053
T-7/-13 -39.7233 31.2763 -1.6555 1.1440
T-4/-6 81.3088 27.3566 2.1988 0.6776
T-1/-3 18.1939 4.9561 -1.4011 0.3762
T+0 0.4675 0.1007
T+1/+7 -0.2659 0.2455
T+8/+14 1.6392 0.8910
T+15/+21 0.2306 0.5984
T+22/+28 -0.2764 0.3631
R-square 0.8224 0.8445

Note: * indicates the associated variable is significant at 5% level.
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F.4 Using Monte Carlo Study to Understand How Different Sources for
Heteroskedasticity Affect Strategies

We found in forecasts of retail movie unit sales that the difference in the performance be-
tween PMA and HRCp in table 3 in conjunction with the relative improved performance
of ARMS presented in table 4 to be surprising. A potential explanation for these findings
is the source of heteroskedasticity in the data. We examine the performance of five dif-
ferent model screening methods that are implied in the subscripts of the following model
sets: MK

GETS, MK
Lasso, MK

ARMS, MK
ARMSH, and MK

HRMS.25 Using data generated by the
Monte Carlo design described in section 3, we compare the risks of each method:

Riski ≡
1
n

n

∑
t=1

(
µ̂t(MK

i )− µt
)2 for i = GETS, Lasso, ARMS, ARMSH, and HRMS,

where µt is the true fitted value (feasible in simulation) and µ̂t(MK
i ) is the average fitted

value obtained by HRCp using specific candidate model set. Four different sample sizes
(n = 100, 200, 300, and 400) are considered and the risk for each method - sample size pair
is averaged across 10,000 simulation draws.

Figures A3 presents the results from this exercise where we normalize the risks by the
risk of the infeasible optimal model. Each line presents the relative risks of each model
screening method associated with R2 from 0.1 to 0.9, respectively. Each sub-panel (a) to
(d) presents the results for different sample sizes.

In virtually every panel of figures A3, HRMS has the best performance. In the random
heteroskedasticity scenario, GETS and Lasso perform well only when R2 is low. As R2 in-
creases, the relative improved performance of ARMS, ARMSH, and HRMS emerges. The
performance of both ARMS and ARMSH more closely mimics HRMS at larger sample
sizes. However, in simulations where heteroskedasticity arises due to neglected parame-
ter heterogeneity both GETS and Lasso perform poorly, particularly when there is strong
correlation among the regressors. The performance of both screening methods is rela-
tively poorer when either the sample size or R2 increases. In contrast, ARMS and ARMSH
yield consistently better results that are similar with increasing n and R2. Note that for
both cases, ARMS and ARMSH yield quite similar results. The results in figures A3 point
out that the performance of both GETS and Lasso rely heavily on homoskedasticity.

25A full permutation of the K = 20 regressors leads to a total of 1,048,575 candidate models (the null
model is ignored). In our experiments, the pre-determined parameters for GETS and ARMS(H) are p = 0.1
and M′ = 20 respectively, whereas we manipulate the tuning parameter for Lasso and select 5 predictors.
We construct 25 − 1 = 31 models based on permutation of the selected parameters.
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Figure A3: Comparing Model Screening Methods with Simulated Data

Scenario A. Random Heteroskedasticity
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F.4.1 Prediction Comparison Using One Set of Measures

Table A9: Evaluating the Importance of Twitter Variable using MAB

nE Include Both Sentiment Only Volume Only Include None Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.5066 0.8659 0.6009 1.5271 1.0000
20 0.7315 0.9111 0.8242 1.6091 1.0000
30 0.7531 0.9463 0.9654 1.8287 1.0000
40 0.9145 0.9934 1.0810 2.1822 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.6232 0.7505 0.6635 0.9881 1.0000
20 0.6955 0.8531 0.7428 1.0911 1.0000
30 0.7042 0.9057 0.7940 1.2939 1.0000
40 0.7625 0.9653 0.8151 1.3988 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 0.7307 0.9235 0.8683 1.4882 1.0000
20 0.7009 0.9621 0.9038 1.6761 1.0000
30 0.7494 0.9796 0.9325 1.7988 1.0000
40 0.8626 0.9744 0.9757 1.9982 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.7461 0.8397 0.7970 1.0981 1.0000
20 0.7564 0.8861 0.8287 1.1532 1.0000
30 0.7954 0.9052 0.8525 1.2887 1.0000
40 0.8211 0.9311 0.8617 1.4109 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the
table. The remaining entries provide the ratio of the degree of the respective forecast error
metric of the estimator using specific estimation approach denoted in the column relative
to results using the HRCp method presented in the last column.
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F.5 Weights of, and Contents of the Top 5 Models Selected by the HRCp

Estimator

Table A10: Describing the 5 Highest Weight Models: Open Box Office

Model 1 Model 2 Model 3 Model 4 Model 5 HRCp

Weight in HRCp 0.3862 0.2159 0.1755 0.0945 0.0816
Genre
Action x x
Adventure x x x x
Animation x
Biography x
Comedy x x
Crime x x
Drama x x
Family x
Fantasy x x x x x x
Horror x x x x
Mystery x x x x
Romance x x x
Sci-Fi x
Thriller x
Rating
PG x
PG13 x
R x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x
T-14/-20 x x x x
T-7/-13 x x x
T-4/-6 x
T-1/-3 x x x x x x
Volume
T-21/-27 x x x x x x
T-14/-20 x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x x x x x
R2 w/ SV. 0.8265 0.8249 0.8258 0.8248 0.8259 0.8230
R2 w/o SV. 0.4836 0.4796 0.4789 0.4911 0.4795 0.7383

Note: x denotes that explanatory variable is included in the particular model, SV denotes
social media data and HRCp refers to a specific model averaging method.
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Table A11: Describing the 5 Highest Weight Models: Retail Movie Unit Sales

Model 1 Model 2 Model 3 Model 4 Model 5 HRCp

Weight in HRCp 0.2977 0.1645 0.1558 0.1447 0.0989
Genre
Action x
Adventure x
Animation x x x x x x
Biography x
Comedy x x
Crime x
Drama x
Family x x x x x x
Fantasy x x x x x x
Horror x x x x x x
Mystery x x x x
Romance x
Sci-Fi x
Thriller x x
Rating
PG x x x x x
PG13 x x x x x x
R x x x x x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x
T-14/-20 x x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x
T+0 x x x x x x
T+1/+7 x x x x x
T+8/+14 x x
T+15/+21 x
T+22/+28 x x
Volume
T-21/-27 x x x x x x
T-14/-20 x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x x x x x
T+0 x x x x x x
T+1/+7 x
T+8/+14 x x
T+15/+21 x x x x
T+22/+28 x
R2 w/ SV. 0.8512 0.8517 0.8530 0.8503 0.8362 0.8450
R2 w/o SV. 0.5976 0.6024 0.6027 0.5976 0.5918 0.7002

Note: x denotes that explanatory variable is included in the particular model, SV denotes
social media data and HRCp refers to a specific model averaging method.
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F.6 Further Comparison of the Relative Prediction Efficiency for Lasso-
based Strategies

Table A12: Further Comparison of the Relative Prediction Efficiency (with Both Sentiment
and Volume)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.1464 1.1704 1.1671 1.1778 1.1132 1.1221 1.1462 1.1642 1.1647 1.1717 1.1094 1.1203 1.0000
20 1.1620 1.1809 1.1803 1.1830 1.0943 1.0992 1.1606 1.1771 1.1797 1.1755 1.0815 1.0826 1.0000
30 1.1922 1.2092 1.2067 1.2113 1.0731 1.0696 1.1899 1.2068 1.2037 1.2092 1.0636 1.0624 1.0000
40 1.2076 1.2295 1.2174 1.2233 1.0608 1.0633 1.2027 1.2197 1.2141 1.2199 1.0573 1.0537 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0529 1.0591 1.0669 1.0689 1.0623 1.0632 1.0430 1.0595 1.0576 1.0687 1.0593 1.0594 1.0000
20 1.0603 1.0657 1.0692 1.0767 1.0556 1.0549 1.0506 1.0631 1.0689 1.0750 1.0551 1.0546 1.0000
30 1.0568 1.0619 1.0669 1.0722 1.0560 1.0558 1.0473 1.0528 1.0576 1.0719 1.0542 1.0538 1.0000
40 1.0591 1.0663 1.0673 1.0734 1.0549 1.0537 1.0578 1.0654 1.0641 1.0720 1.0536 1.0530 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.3737 1.2921 1.3495 1.3456 1.3621 1.3757 1.3558 1.2784 1.3354 1.3434 1.3512 1.3704 1.0000
20 1.3756 1.2772 1.2811 1.2457 1.2578 1.2768 1.3448 1.2459 1.2697 1.2432 1.2568 1.2651 1.0000
30 1.3001 1.2388 1.2086 1.1616 1.1666 1.1814 1.2728 1.2282 1.2012 1.1530 1.1644 1.1822 1.0000
40 1.2306 1.1718 1.1609 1.1135 1.1364 1.1454 1.2069 1.1565 1.1486 1.1093 1.1281 1.1398 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2303 1.2058 1.2161 1.1581 1.1534 1.1600 1.2229 1.1974 1.2155 1.1575 1.1523 1.1564 1.0000
20 1.2096 1.1844 1.1958 1.1386 1.1427 1.1436 1.2036 1.1760 1.1890 1.1369 1.1411 1.1398 1.0000
30 1.1887 1.1656 1.1735 1.1182 1.1204 1.1195 1.1794 1.1569 1.1675 1.1161 1.1180 1.1149 1.0000
40 1.1704 1.1469 1.1557 1.0989 1.1064 1.1086 1.1600 1.1364 1.1459 1.0959 1.1005 1.1027 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column. OLSq and HRCp

q stand for OLS and HRCp with q number of covariates
selected by the Lasso.
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Table A13: Further Comparison of the Relative Prediction Efficiency (with Sentiment
Only)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.1111 1.1240 1.1428 1.1403 1.1389 1.1528 1.0865 1.0922 1.1077 1.1022 1.1068 1.1084 1.0000
20 1.0836 1.0940 1.1102 1.1121 1.0887 1.0896 1.0802 1.0766 1.0912 1.1010 1.0795 1.0842 1.0000
30 1.0648 1.0700 1.0888 1.0871 1.0799 1.0840 1.0641 1.0643 1.0787 1.0809 1.0702 1.0772 1.0000
40 1.0732 1.0779 1.1027 1.1099 1.0902 1.0909 1.0727 1.0768 1.0939 1.0916 1.0777 1.0795 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0305 1.0422 1.0485 1.0528 1.0552 1.0652 1.0302 1.0325 1.0368 1.0281 1.0318 1.0457 1.0000
20 1.0314 1.0399 1.0467 1.0535 1.0556 1.0647 1.0276 1.0311 1.0323 1.0369 1.0413 1.0456 1.0000
30 1.0303 1.0378 1.0474 1.0522 1.0542 1.0669 1.0256 1.0298 1.0318 1.0364 1.0382 1.0421 1.0000
40 1.0355 1.0468 1.0542 1.0615 1.0592 1.0719 1.0281 1.0343 1.0398 1.0402 1.0411 1.0475 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.0179 1.0323 1.0391 1.0299 1.0494 1.0257 1.0152 1.0037 1.0030 1.0192 1.0151 1.0068 1.0000
20 1.0462 1.0589 1.0635 1.0528 1.0639 1.0362 1.0388 1.0515 1.0557 1.0429 1.0509 1.0303 1.0000
30 1.0308 1.0406 1.0501 1.0376 1.0445 1.0199 1.0273 1.0296 1.0342 1.0338 1.0328 1.0168 1.0000
40 1.0111 1.0214 1.0307 1.0291 1.0309 1.0094 1.0019 1.0204 1.0263 1.0227 1.0233 1.0033 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0180 1.0219 1.0216 1.0212 1.0394 1.0330 1.0063 1.0101 1.0073 1.0088 1.0192 1.0132 1.0000
20 1.0044 1.0132 1.0162 1.0194 1.0366 1.0242 1.0072 1.0049 1.0062 1.0056 1.0166 1.0115 1.0000
30 1.0013 1.0100 1.0145 1.0195 1.0327 1.0253 1.0010 1.0072 1.0014 1.0019 1.0148 1.0122 1.0000
40 1.0081 1.0042 1.0089 1.0149 1.0300 1.0214 1.0028 1.0032 1.0013 1.0099 1.0052 1.0023 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column. OLSq and HRCp

q stand for OLS and HRCp with q number of covariates
selected by the Lasso.
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Table A14: Further Comparison of the Relative Prediction Efficiency (with Volume Only)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.0614 1.0391 1.0312 1.0315 1.0309 1.0380 1.0551 1.0351 1.0297 1.0224 1.0255 1.0362 1.0000
20 1.0817 1.0181 1.0074 1.0122 1.0069 1.0137 1.0791 1.0102 0.9984 1.0108 1.0041 1.0121 1.0000
30 1.1556 1.0217 1.0176 1.0200 1.0207 1.0263 1.1517 1.0159 1.0107 1.0131 1.0117 1.0205 1.0000
40 1.1705 1.0267 1.0179 1.0198 1.0170 1.0271 1.1689 1.0227 1.0104 1.0164 1.0172 1.0199 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0058 1.0113 1.0109 1.0113 1.0116 1.0115 1.0012 1.0037 1.0067 1.0119 1.0036 1.0018 1.0000
20 1.0228 1.0150 1.0160 1.0131 1.0117 1.0163 1.0148 1.0120 1.0069 1.0078 1.0045 1.0137 1.0000
30 1.0343 1.0122 1.0147 1.0149 1.0172 1.0212 1.0249 1.0075 1.0091 1.0125 1.0159 1.0158 1.0000
40 1.0280 1.0169 1.0194 1.0203 1.0213 1.0247 1.0264 1.0084 1.0104 1.0186 1.0166 1.0196 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.2868 1.2680 1.2518 1.1204 1.0814 1.0996 1.2614 1.2570 1.2493 1.1113 1.0772 1.0969 1.0000
20 1.2641 1.2501 1.2383 1.1429 1.0971 1.0951 1.2537 1.2472 1.2332 1.1340 1.0883 1.0879 1.0000
30 1.1739 1.1650 1.1541 1.0774 1.0604 1.0389 1.1700 1.1549 1.1439 1.0704 1.0522 1.0304 1.0000
40 1.1208 1.1178 1.1126 1.0543 1.0504 1.0125 1.1103 1.1082 1.1092 1.0474 1.0408 1.0093 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.1268 1.1229 1.1274 1.0750 1.0752 1.0715 1.1236 1.1128 1.1177 1.0668 1.0728 1.0724 1.0000
20 1.1125 1.1080 1.1138 1.0688 1.0631 1.0547 1.1096 1.0970 1.1043 1.0610 1.0632 1.0461 1.0000
30 1.0874 1.0886 1.0918 1.0492 1.0479 1.0439 1.0803 1.0828 1.0820 1.0490 1.0455 1.0364 1.0000
40 1.0784 1.0833 1.0877 1.0487 1.0474 1.0425 1.0768 1.0803 1.0786 1.0463 1.0434 1.0367 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column. OLSq and HRCp

q stand for OLS and HRCp with q number of covariates
selected by the Lasso.
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F.7 Comparing ARMS and ARMSH

From the exercises in the main text, we notice that ARMS and ARMSH provide similar
results in many cases. Although ARMSH is hetero-robust, ARMS and ARMSH end up
with similar candidate model sets. In the following table A15, we show the 5 highest
weight models estimated by HRCp using candidate model sets screened by ARMS and
ARMSH respectively. For each model screening method, an “x” denotes the associated
explanatory variable is included in the particular model. Each model screening method
contains a candidate model set of 100 selected models. Estimated model weights are
presented in the last row for each method.

Table A15: Describing the 5 Highest Weight Models Using Model Sets Screened by ARMS
and ARMSH

ARMS ARMSH
M1 M2 M3 M4 M5’ M1 M2 M3 M4 M5’

Genre
Action
Adventure x x x x x x
Animation
Biography
Comedy
Crime x x
Drama
Family
Fantasy x x x x x x x x x x
Horror x x x x x x
Mystery x x x x x x
Romance x x
Sci-Fi
Thriller
Rating
PG
PG13
R
Core
Budget x x x x x x x x x x
Weeks x x x x x x x x x x
Screens x x x x x x x x x x
Sentiment
T-21/-27
T-14/-20 x x x x x x x x
T-7/-13 x x
T-4/-6
T-1/-3 x x x x x x x x x x
Volume
T-21/-27 x x x x x x x x x x
T-14/-20
T-7/-13 x x x x x x x x x x
T-4/-6 x x x x x x x x x x
T-1/-3 x x x x x x x x x x
Weights 0.4278 0.3914 0.1296 0.0332 0.0155 0.4283 0.4220 0.1038 0.0291 0.0168

Note: x denotes that explanatory variable is included in the particular model. The above exercise is carried out by
using the top 100 models screened by ARMS and ARMSH respectively for open box office.

The top 5 models for each method accumulates more than 95% of the total weights.
Moreover, we notice that the top 5 models for each method are identical with the same
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ranking. This explains why in our prediction experiment, ARMS and ARMSH yield quite
similar results in terms of forecast accuracy. In Subsection F.4, we conduct a Monte Carlo
study to shed further light on the relative performance of ARMS and ARMSH under
different scenarios related to what is the source of heteroskedasticity.

F.8 Performance of Recursive Partitioning Methods Using Identical Vari-
ables to Model Screening/Averaging Strategies

In the empirical exercises, we restrict that each potential model contains a constant term
and 7 (11) relatively significant parameters for open box office (movie unit sales) based
on the OLS results presented in table A5. To examine if our findings are driven by pre-
selection, we compare the performance of recursive partitioning methods to econometric
strategies using identical set of selected 7 (11) parameters. Results are presented in table
A16.

As usual, we report the median MSFE and MAE of different strategies listed in panel A
of table A16 for each evaluation set of different sizes nE = 10, 20, 30, 40. Panel A presents
results for forecasting open box office and panel B demonstrates results for forecasting
movie unit sales. To ease interpretation, in each row of table A16 we normalize the MSFEs
and MAFEs, respectively, by the MSFE and MAFE of the HRCp.

For both panels, table A16 demonstrates that there are very large gains in prediction
efficiency of the recursive partitioning algorithms relative to the benchmark HRCp, al-
though such gains are not as large as those demonstrated in table 5, in which the recur-
sive partitioning methods use all the potential variables available. Take the MSFE results
under nE = 10 in panel A for example, Reg.Tree shows approximately 37% increase in
prediction efficiency in table 5 and 20% increase in table A16. The results indicate that
the pre-selected 7 (11) variables play crucial roles in predicting the open box office (movie
unit sales). On the other hand, the other potential variables also jointly provide signifi-
cant predicting power. In summary, the gains from machine learning strategies that use
recursive partitioning over econometric methods is not due to differences in the set of
predictors.

F.9 Test for Superior Predictive Ability (SPA) of the MASVRLS Method

In this subsection, we perform the SPA test of Hansen (2005) to examine if the MASVRLS
method we proposed demonstrates superior predictive ability over all the other methods
listed in this paper. We consider both the squared forecast error (SFE) and the absolute
forecast error (AFE) as the quantities for comparing predictive ability. We set the results
of MASVRLS as the benchmark.

The null hypothesis of the SPA test states that the average performance of the bench-
mark is as good as the best average performance across the other competing methods. The
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Table A16: Results of Relative Prediction Efficiency between Recursive Partitioning Meth-
ods Using Selective Variables and the Benchmark Method

nE Reg. Tree Bagging Random Forest Benchmark
RF10 RF15 RF20

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.8020 0.9501 0.8155 0.8542 0.9559 1.0000
20 1.0149 0.9287 0.8560 0.8540 0.8940 1.0000
30 1.1125 0.8611 0.8679 0.8525 0.9940 1.0000
40 1.3306 1.1571 1.2549 1.1343 1.2340 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.7794 0.8487 0.7865 0.7973 0.8641 1.0000
20 0.8079 0.7635 0.7571 0.7359 0.7507 1.0000
30 0.8780 0.8487 0.8536 0.8670 0.8909 1.0000
40 0.8501 0.8539 0.8649 0.8837 0.8914 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 0.9236 0.9580 0.9009 0.9151 0.9571 1.0000
20 1.0261 0.9600 0.9439 0.9053 0.9557 1.0000
30 1.2982 0.9810 1.0447 1.0652 1.1236 1.0000
40 1.1213 1.0037 0.9886 0.9761 0.9834 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.8390 0.9794 0.9201 0.9525 0.9443 1.0000
20 0.8409 0.8303 0.8448 0.8388 0.8563 1.0000
30 0.9485 0.9103 0.9431 0.9220 0.9250 1.0000
40 0.8905 0.8367 0.8332 0.8456 0.8398 1.0000

Note: Bold numbers denote the strategy with the best performance in that
row of the table. The remaining entries provide the ratio of the degree of
the respective forecast error metric of the estimator using specific estimation
approach denoted in the column relative to results using the HRCp method
presented in the last column. The subscript in RFq stands for the number of
covariates randomly chosen at each node to consider as the potential split
variable. All bagging and random forest estimates involve 100 trees.

alternative is that there is at least one competing method has better average performance
than the benchmark. We estimate the p-values under the two forecast error quantities
for open box office and movie unit sales. Large p-values signify the superior predictive
ability of the MASVRLS method over others.

Results for different nE values are presented in table A17 and all the p-values are larger
than 5% implying the superior predictive ability of the MASVRLS method over others.
This is particularly true for the AFE case in which the p-values are as high as 1 in all
cases. The p-values for open box office under SFE are relatively smaller than other cases
which coincides with the MSFE results demonstrated in table 5.

F.10 Model Averaging Regression Tree

This subsection considers adding a model averaging flavor to a single regression tree
(MART). We duplicate the Monte Carlo simulations in section 3 and the MART method is
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Table A17: SPA Test Results of the MASVRLS Method

nE Open Box Office Movie Unit Sales
SFE AFE SFE AFE

10 0.4424 1.0000 1.0000 1.0000
20 0.1772 1.0000 0.2975 1.0000
30 0.2145 1.0000 1.0000 1.0000
40 0.0987 1.0000 0.1266 1.0000

represented by the lines with dots in figure A4. Although MART dominates RT for both
heteroskedasticity scenarios in figures A4(a) and A4(b), it is clear in figures A4(c) and
A4(d) that the MART method is outperformed by both MAB and MARF by a large mar-
gin in both scenarios. In fact under random heteroskedasticity MART performs similarly
to OLS estimation of GUM. This reinforces our claim that gains to adding model aver-
aging to recursively partitioned subgroups occurs when there is systemic heterogeneity
perhaps due to parameter heterogeneity. The MART method only outperforms GUM
under parameter heterogeneity.

Figure A4: Risk Comparison under Different Scenarios
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(b) Parameter Heterogeneity: RT vs. MART

Reg.Tree
MART

200 400 600 800 1000

Number of Observations

60

70

80

90

100

110

120

130

R
is

k

(c) Random Heteroskedasticity: All
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F.11 Centered R2 on the Training Set

Table A18: Centered R2 Description on 10,001 Training Sets

nE Method Mean Median 2.5% Q 97.5% Q
Panel A: Open Box Office
10 GUM 0.8666 0.8718 0.7721 0.9329

MTV 0.5862 0.5852 0.4931 0.6871
20 GUM 0.8685 0.8743 0.7704 0.9355

MTV 0.5891 0.5869 0.4946 0.6964
30 GUM 0.8715 0.8773 0.7740 0.9390

MTV 0.5936 0.5918 0.4951 0.7011
40 GUM 0.8745 0.8811 0.7719 0.9416

MTV 0.5976 0.5958 0.4948 0.7100

Panel B: Movie Unit Sales
10 GUM 0.9037 0.9071 0.8258 0.9596

MTV 0.7251 0.7248 0.6309 0.8188
20 GUM 0.9087 0.9127 0.8305 0.9628

MTV 0.7338 0.7335 0.6370 0.8305
30 GUM 0.9137 0.9184 0.8322 0.9679

MTV 0.7423 0.7416 0.6447 0.8407
40 GUM 0.9205 0.9255 0.8396 0.9729

MTV 0.7523 0.7516 0.6497 0.8547

F.12 Selected Parameters by OLS-post-Lasso

Table A19: Describing the Selected Parameters by OLS-post-Lasso

Method 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile Full Sample
Sentiment Volume Sentiment Volume Sentiment Volume Sentiment Volume Sentiment Volume

Panel A: Open Box Office
OLS10 5 1 3 2 4 1 5 2 6 2
OLS12 6 1 5 2 4 1 6 2 7 2
OLS15 7 2 6 2 5 1 6 2 8 3

Panel B: Movie Unit Sales
OLS10 7 1 8 1 8 2 6 2 7 2
OLS12 9 1 9 1 9 2 8 2 8 2
OLS15 11 1 10 1 10 2 11 2 10 2

Note: Each entry in the table lists the number of respective social media variables chosen as one of the first 10 predictors among all
variables in different budget subsamples 10, 12, or 15.
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F.13 Revisiting the Results of Lehrer and Xie (2017) with Popular Ma-
chine Learning Estimators

This section illustrates that random forest and bagging yield more accurate forecasts on
the Lehrer and Xie (2017) subsample of films with budgets between 20 to 100 million.
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F.14 Expressing Results on Forecast Accuracy in Absolute Values

This subsection presents the results of the forecasting experiment in terms of absolute
units of the loss function, as opposed of degree of loss to relative to the chosen baseline
estimator. These results are measured in millions of dollars and the general finding is
that the statistical learning methods generally reduce the variation relative to econometric
approaches. The addition of model averaging in the leaves does not lead to further gains
in efficiency but achieves higher MSFE and MAFE by reducing the bias. These results
show that statistical learning methods are less variable and the incorporation of model
averaging in place of the local constant model achieves gains by increasing the accuracy
of forecasts. These results appear consistent with the patterns illustrated in the main text
when discussing Figure 1.

F.15 Comparing Computational Efficiency between HBART and MARF

In this section, we compare the performance of HBART and MARF. Note that the two
algorithms rely on different splitting rules and tuning parameters. They construct each
regression tree in different fashion. The code we use for each strategy is written with
different software (see Appendix table A1) so we do not wish to compare their computa-
tional efficiency by CPU time. Rather, in this section we consider the following sensitivity
test.

Both methods draw random trees at a given number. Denote such number as B.
The number of trees in a forest is a parameter that is not tunable in the classical sense.
Theoretically, the prediction accuracy of a method increases with B. In practice, how-
ever, one may want to set B as small as possible for the sake of computational efficiency.
Probst and Boulesteix (2018) theoretically prove with RF that more trees are always better
since they reduce the mean squared error. The convergence rate, and thus the number
of trees needed to obtain optimal performance, depends on the dataset’s properties. Us-
ing a large number of datasets, Probst and Boulesteix (2018) show empirically that with
RF the biggest performance gain can often be achieved when growing the first 100 trees.
Similarly, Hastie, Tibshirani, and Friedman (2009) demonstrate that the benefit from in-
creasing B is minimal, when B is large enough.

In this exercise, we compare the improvement in results when B = 20 versus B =100
for HBART and MARF. The computation time increases linearly with the number of trees
so we would expect that to build trees with B = 20 would be five times faster than
B = 100. We also anticipate that the prediction accuracy increases for both methods as
B increases. Table A22 present the percentage gain in prediction accuracy in terms of
MSFE (top panel) and MAFE (bottom panel) as the size of the evaluation set increases.
Columns 2 and 3 shows the result for open box office prediction for HBART and MARF
and columns 4 and 5 show the corresponding results for predicting retail movie unit sales
with HBART and MARF, respectively.
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Table A22: Prediction Accuracy Improvement by Percentage

Open Box Office Movie Unit Sales
nE HBART MARF HBART MARF

MSFE MSFE
10 18.2506 3.7511 38.2600 3.9410
20 12.3448 3.6438 37.7286 7.1008
30 10.7863 6.2474 19.9060 5.7431
40 10.2459 7.5833 29.6064 2.7005

MAFE MAFE
10 18.8853 1.3436 15.6816 5.5966
20 10.7998 3.7752 8.4059 2.3489
30 3.6224 2.4628 6.3800 2.6138
40 2.0861 2.8604 5.8877 2.5064

Each entry presents the ratio of forecast accuracy
with B=100 relative to B=20 where forecast accuracy
is measured by MSFE and MAFE.

The results document that when the size of the evaluation set is small (corresponding
to a large training set) that there are large improvements in forecast accuracy with HBART
when increasing B from 20 to 100. This implies the necessity of setting B to a relatively
large number for HBART in our exercises. On the other hand, we note that improvement
for MARF by setting B to 100 is relatively small comparing to B = 20.

There is a trade-off between accuracy and CPU time for both methods. An interpre-
tation of the results is that MARF (or RF) do not require as large a value of B to obtain
accurate forecasts and is therefore more computationally efficient. This finding may be
important for practitioners if computational speed is an issue. Last, the results indicate
when the training set is small, there are smaller gains from increasing B with HBART
when forecasting open box office, which is not surprising since there is both substantial
variation in this outcome measure and a small sample size for the training set.

F.16 Using MASVRLS to Understand How Social Media Should be Ac-
counted For

In this section, we apply MASVRLS to forecast film outcomes with data sets the contain
different combinations of the Twitter data. First, analogous to the MTV estimates in the
main text we consider conducting forecasts without sentiment and volume data. We next
repeat exercise presented in subsection F.3 by conducting forecasts (ii) without Twitter
sentiment data; (iii) without Twitter volume data; and (iv) using both Twitter measures.
Results relative to the benchmark model are presented in Table A23.

The results show that if one incorporates volume alone they gain more accurate fore-
casts that using sentiment measures with MASVRLS. In other words, forecasts calcu-
lated without sentiment yield higher prediction accuracy than MASVRLS without vol-
ume. MASVRLS without Twitter data has the worst overall performance and it performs
only marginally worse than MASVRLS without volume data. What is striking, is how
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Table A23: Results of Relative Prediction Efficiency for MASVRLS by Different Sets of
Social Media Explanatory Variables

nE Include None Volume Only Sentiment Only Include Both Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.6173 0.4930 0.5181 0.4128 1.0000
20 0.7083 0.5346 0.7058 0.4798 1.0000
30 0.9753 0.5897 0.9654 0.4954 1.0000
40 1.2911 0.7098 1.0355 0.5538 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.6319 0.5348 0.6000 0.5002 1.0000
20 0.7000 0.6379 0.7061 0.5536 1.0000
30 0.9506 0.6454 0.9349 0.5727 1.0000
40 1.0142 0.6776 1.0031 0.6057 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 0.7038 0.5883 0.6757 0.5820 1.0000
20 0.7481 0.6818 0.7320 0.5964 1.0000
30 0.9962 0.7536 0.9858 0.6974 1.0000
40 1.2675 0.8259 1.0554 0.7931 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.6590 0.5795 0.6559 0.5494 1.0000
20 0.6856 0.6201 0.6644 0.6015 1.0000
30 0.9541 0.6743 0.9387 0.6487 1.0000
40 1.1921 0.7458 1.0859 0.6879 1.0000

well MASVRLS without Twitter data compared to OLS estimation of the MTV model pre-
sented in the main text. When the evaluation set is small, MASVRLS without Twitter data
outperforms all of the econometric estimators considered in the main text. This stresses
the strength of MASVRLS to capture nonlinearities even with fairly small datasets. Last,
and consistent with the findings in section F.3, MASVRLS that incorporates both Twitter
measures has the best performance, further reinforcing the need to use both measures
that likely capture different dimensions of consumer demand.

F.17 The Robustness of MARF Results to Different Values of q

In this section, we show the results by MARF with different values of q presented in
the x-axis of each subplot in Figure A5. Probst, Boulesteix, and Bischl (2019) provide
evidence in an application with 38 datasets that among all the potential hyperparameters
to tune with RF, tuning q yields the biggest average improvement in forecasting. From
a computational perspective, having a small q, the speed should be fast but there is a
chance the splitting direction is far from optimal.

We consider a list of q varies from 2 to 30. The results show that the best performing
MARF for open box office are the ones with moderate values of q. For DVD sales, the
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best performing MARFS are those with large q. Yet, , there is not large differences in the
results with the higher q than the default used for either outcome.
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Figure A5: Risk with MARF with Different Values of q
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F.18 Examining SVR Methods with Different Kernels

Probst et al. (2018) suggest that there is more benefits from changing hyperparameters of
SVM algorithms than random forest. In this section, we compare various SVR methods
with different kernels using default hyperparameters. We also compare results by differ-
ences in the loss function of SVR versus SVRLS and whether we under MASVRLS with a
homoskedastic error using the Mallow’s criterion (equation A40) or heteroskedastic error
using the HPMA criteria (equation A41).

1. SVR-L: conventional SVR with linear kernel;

2. SVR-G: conventional SVR with Gaussian kernel;

3. SVR-P: conventional SVR with polynomial kernel;

4. SVRLS-L: least squares SVR with linear kernel;

5. SVRLS-G: least squares SVR with Gaussian kernel;

6. SVRLS-P: least squares SVR with polynomial kernel;

7. MASVR1
LS-L: model averaging SVRLS with linear kernel by PMA;

8. MASVR1
LS-G: model averaging SVRLS with Gaussian kernel by PMA;

9. MASVR1
LS-P: model averaging SVRLS with polynomial kernel by PMA;

10. MASVR2
LS-L: model averaging SVRLS with linear kernel by HPMA;

11. MASVR2
LS-G: model averaging SVRLS with Gaussian kernel by HPMA;

12. MASVR2
LS-P: model averaging SVRLS with polynomial kernel by HPMA;

We present the results in figure format in Figure A6. The results show that MASVRLS
always yield the best performance irrespective of which kernel was employed. The dif-
ferences between MASVR1

LS and MASVR2
LS appear to be marginal. In general, SVRLS has

better performance than conventional SVR. Finally, the linear kernel has the worst overall
performance among SVRLS and MASVRLS methods.
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Figure A6: Comparing Various SVR Methods with Different Kernels
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F.19 Further Results Exploring Robustness to Alternative Hyperparam-
eters

Within the social sciences, there is increased attention paid towards developing a pre-
analysis plans to deal with concerns ranging from specification search and failure to repli-
cate. The idea of a pre-analysis plan may also appear relevant with machine learning al-
gorithms as it pertains to the selection of both hyperparameters and methods to choose
specific tuning parameters. In this paper, we began with the default settings with well-
established software. We have conducted a detailed investigation of the sensitivity of our
conclusions to alternative hyperparameters for every machine learning algorithm This in-
vestigation focused heavily on small changes from the default values to guide subsequent
larger changes. Many of these additional exercises are included in the online appendix
and due to the length of the current appendix output from the remaining checks can be
made available from the authors upon request.

In this section, we consider alternative hyperparameters rather than the default con-
ventional parameter settings for a large number of machine learning methods examined
in the main text. Since our main findings stress the performance of MARF, SVR-type
methods, and HBART, robustness to different values of the hyperparameters is explored
in greater detail in Section F.17, F.18, and F.15, respectively.

We replicate the empirical exercises in the main text and consider the following hy-
perparameter setting.

1. For BOOST, we grow deeper and shallower trees by setting the number of minimum
leaf size at 10 and 20 instead of the default setting 15. We also choose the optimized
leaf size between 10 and 20 by 5-fold cross-validation. We denote the methods as
BOOST’, BOOST”, and BOOST”’, respectively.

2. For RT, BAG, and RF, we grow shallower trees by setting the number of minimum
leaf size at 5 instead of the deep tree default setting 1. We denote these methods as
RT’, BAG’, RF’, respectively. .

3. For SVR-P, we set the polynomial order to 2 instead of the default value 3.

4. For SVRLS-G, we fixed σ2
x = 10 instead of the default estimated value by 5-fold cross-

validation. We consider two different penalty coefficients λ = 1 and λ = 10. The
latter is more sensitive to the magnitude of the coefficients. We denote the methods
under the two settings as SVRLS-G’ and SVRLS-G”, respectively.

5. Similarly, for SVRLS-P, we also fixed the hyperparameters at γ = 1 and d = 2 instead
of the optimized value estimated by 5-fold CV. We consider two different penalty
coefficients λ = 1 and λ = 10. We denote the methods under the two settings as
SVRLS-P’ and SVRLS-P”, respectively.
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Results are presented in Table A24. As we can see, the results are similar to those in the
main text and the appendix. Comparing to the results in Section F.18, the new SVRLS-P’
and SVRLS-P” are very similar.

It is important to reiterate that the conclusions of any machine learning algorithm
horse race could be based on selection of hyperparameters. Our main findings in the text
are drawn from pre-determined parameters and generally using cross validation tech-
niques. The robustness exercise has increased our confidence in the main findings as the
general ranking across forecasting strategies in terms of accuracy as measured by either
MAFE or MSFE remains stable provided the tuning parameters are selected from an ap-
propriate range that surrounds the defaults.

It remains possible that either haphazardly or using a grid search to choose tuning
parameters, that we may find certain ranges of hyperparameters where the ordering in
terms of forecast accuracy changes. Despite this caeat we did a comprehensive investiga-
tion of the sensitivity of our findings to hyperparameter choice with the simulated data
used in the Monte Carlo exercises presented in section 3 of the main text. The results
continuously found large gains from incorporating model averaging with either a tree
based or least squares SVR strategy and that the gains from the hybrid strategy with least
squares SVR greatly exceed the hybrid strategy with regression trees as well as HBART,
particularly when the sample sizes are less than or equal to 400. Future work is needed
to investigate if there are further gains from alternative methods to make SVRLS sparse
such as pruning after training and then retraining (i.e. Suykens 2000) or following Hong,
Zhang, Ye, Cai, He, and Wang (2019) who suggest using a simplex basis function as the
kernel function to obtain sparse SVMLS models.
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F.20 Hybrid Approaches to Explain Instead of to Predict

In Section E.1 , we surveyed the literature that explores relationships which either explain
the role of eWOM on film revenue or predict film revenue where eWOM is an explana-
tory variable. This distinction is important since it is well-known that machine learning
algorithms are designed to optimize predictive performance. In this section, we consider
whether and how they can also inform studies that seek to understand a marginal effect
of eWOM on film revenue. A marginal effect differs in their interpretation from the vari-
able importance metrics reported in Tables 6 and 7 of the main text.26 In addition, many
researchers wish to undertake statistical inference on this estimated marginal effect.

As stressed in section 5.1 of the main text, the relationship between explanatory vari-
ables and either movie studio revenue outcome variable that we considered is complex
and includes interactions. The improved performance of the algorithms evaluated in ta-
ble 5 of the main text arises since the influence of the explanatory variables on the predic-
tion surface is not additive but more complex since the features in the prediction model
interact with each other. The presence of these interactions explains why more complex
algorithms (including tree-based algorithms) tend to perform very well relative to the
strategies considered in Tables 3 and 4 of the main text.

To demonstrate, we present an illustration of the estimated regression tree in Figure
A7 for film revenue. To conserve space, the regression tree in Figure A7 is pruned. We can
collect information on all the splitting nodes and construct dummy variables accordingly.
For example, at the root node, the variable Screen is used to split the data and the cut
point is 4.0655. The root node can be represented by the indicator IScreen∈(−∞,4.0655) which
is a n × 1 dummy variable such that elements satisfying Screen < 4.0655 equal 1 and
0 otherwise. In other words, the first few splits of the tree show that the relationship
between screens and box office opening weekend revenue is explained by a step function,
where the step size was chosen by the RT algorithm.

If we examine the tree in its entirety, we observe that there are 14 splitting nodes in
Figure A7. Each splitting node contains two directions allowing us to create indicators,
for example, Screen < 4.0655 and Screen ≥ 4.0655 at the root node, this can be easily
achieved by combining the indicator IScreen∈(−∞,4.0655) with the constant term. Therefore,
we need one and only one indicator for each splitting node. We can also include interac-
tions between these indicator variables to separate out the common effect of the early split
from the differential effect between the two branches at the later split. In other words, the
estimates of a RT allow one to consider both indicator variables as well as potentially
their interactions to naturally capture complex interactions that can be considered to be
incorporated in linear econometric models.

With knowledge of where these nonlinearities are exhibited, we consider two types

26We do not consider partial dependence plots (Friedman, 2001) since they obfuscate heterogeneous re-
lationships that result from strong interaction effects.
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of analyses.27 First, we revisit the GUM model and rather than enter the screen variable
as a continuous linear regressor, we replace it with indicators that capture the estimated
nonlinear step function suggested by the earlier nodes of Figure A7. Further, we also esti-
mate a combined GUM model that adds each of the 14 indicators for splits at a node with
the original explanatory variables. Note that we replace the indicators based on variable
Screen by a step function, of which the components are represented by IScreen∈ (−∞, 1.3385)
to IScreen∈[3.7025,4.0655), respectively. The last component IScreen∈ [4.0655,+∞) is left out as the
reference term. OLS estimates of models that contain these sets of regressors are presented
with the original GUM model in Table A25.

Second, we can also use regularization methods including OLS-post Lasso to deter-
mine which interactions to include. Since the algorithm for RT finds the optimal split
at each node, the solution depends crucially on each previous step. As such, rather than
consider all of the interactions suggested in Figure A7, we consider the potential set to not
only solely consider all the indicators denoting a split at each node but all of the poten-
tial two by two interactions of these node indicators. With 14 indicators and the constant
term, this yields a total of 16,384 different potential combinations. The corresponding
n × 16384 raw indicator matrix has rank 96 and after we remove columns that induce
multicollinearity, we obtain a final n × 96 matrix of indicators and their products. This
matrix is combined with the original explanatory variables used in the GUM model to
form the input variable set. We then apply OLS-post-LASSO to reduce the dimensional-
ity of the explanatory variables. This strategy has the advantage of considering several
of the two-way interactions proposed in Figure A7. We consider different choices for the
penalty term and Table A26 reports estimates from models where the penalties selected
13 and 9 explanatory variables in addition to the constant.

Table A26 contrasts the original OLS estimates (and robust standard errors) of the
GUM model in column 3 with a model that replaces screens as a linear regressor with
the step function suggested in the initial nodes of Figure A7 in column 2 and a combined
GUM model that adds all the single node split indicators in column 1. Since the models
are nested, we can conduct specification tests between the restricted GUM model and the
models in columns 1 and 2 of Table A25. In each case, the specifications with the nonlin-
earities suggested by RT is preferred. Accounting for nonlinearities leads each of the film
rating indicators as well as the family genre movies to become statistically significant in
which the estimated magnitude of is more than triple the size of the GUM model esti-
mate. The results show that the positive effect of screens is driven by films that are slated
to open at over 4065.5 locations.

Turning to the effects of social media variables, we find that the effects of volume in
both T-1/-3 and T-4/-6 is highly nonlinear as and the effect of T-1/-3 fall by over 50%
in size once this nonlinearity is accounted for. Interestingly, none of the linear sentiment
variables remain statistically significant once we account for nonlinearities in column 1.
Taken together, these results point to the importance of there being thresholds in both

27 The approach we illustrate can also be used with other tree based algorithms including M5’.
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social media measures beyond which there are significant gains in box office opening
revenue. This suggests the effect of eWOM in the week prior to opening on immediate
box office revenue is highly non-linear. This is a finding that prior research did not report
since measures obtained from social media are often restricted to have a linear effect and
this could explain the large differences in the variable importance findings we observed
with MAB and MASVRLS in table 6 relative to Lasso results presented in Appendix Table
F12.

The columns of Table A26 present OLS post Lasso estimates and standard errors from
models that can choose only 13 and 9 explanatory variables from an expanded set includ-
ing the original GUM model as well as set of indicators and their two by two interactions.
This table reinforces the importance of nonlinearities since 8 of the 13 variables selected
of model 1 and 5 of the 9 variables selected by model 2, are from the splits suggested in
Figure A7. Further, similar to the results in table A25, we see the importance of includ-
ing social media measures collected in the week prior to opening on immediate earnings
and that nonlinearities in these measures are present. The results also suggest that family
films have a large statistically significant effect on opening weekend box office, an effect
that was not apparent with the linear GUM model. In addition, the role of screens and rat-
ings are not statistically significant. Without theory, the aid of RT in Figure A7 is needed
to identify how to model these nonlinearities. While only one 2× 2 interaction is kept by
the Lasso in model 1, its effect is not statistically significant. This result suggests that the
nonlinearities exhibited in the underlying data may not be complex in this application.

The above strategies consider the use of machine learning to suggest appropriate non-
linearities for when a researcher wishes to explain the effect of multiple explanatory vari-
ables on the outcome of interest. Yet, in many empirical papers the aim of the researcher
is to provide an understanding of how changes in a specific explanatory variable of in-
terest influence outcomes, where we condition on all potential observed confounding
variables. If a researcher is interested in the effect of a single explanatory variable on
the outcome, the framework proposed in Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, Newey, and Robins (2018) for estimating treatment effects using a machine learn-
ing algorithm is appealing. This approach involves three estimation steps to obtain a

√
n

consistent estimate of this parameter of interest and most importantly valid confidence
intervals can be constructed. Two of the three estimation steps involve machine learn-
ing methods so that the researcher does not need to make strong assumptions about the
functional form of the model. Naturally, exogeneity still must hold to obtain unbiased
and consistent estimates, but unlike with linear regression methods one does not need to
worry that they did not correctly specify the functional form. The three step estimation
procedure does remove any regularization bias from using a machine learning algorithm
with Neyman orthogonality and also deals with any possible bias from overfitting using
sample-splitting.

In summary, this section outlines two strategies of how a researcher whose primary
interest is to explain how a covariate influences outcomes can use machine learning to
understand the complex functional form of the model that underlies an accurate forecast
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Table A25: OLS Estimates of Models of the GUM model and Expanded GUM Models
with Nonlinearities in Regressors Suggested by Figure A7

Variable Model 1 Model 2 GUM
Coefficient Robust S.E Coefficient Robust S.E Coefficient Robust S.E

Indicator
IScreen∈(−∞,1.3385) -56.6300 14.1695 -65.0731 11.7315
IScreen∈[1.3385,2.0375) -57.8002 13.2526 -62.2067 11.8837
IScreen∈[2.0375,3.0230) -53.0591 11.8713 -55.4585 11.5559
IScreen∈[3.0230,3.7025) -50.8725 11.3095 -49.6291 11.0167
IScreen∈[3.7025,4.0655) -39.0310 10.3892 -37.8028 10.7892
IS:T-1/-3∈ (−∞, 73.1350) -4.2889 3.8930
IV:T-1/-3∈ (−∞, 0.4537) -10.8812 4.5893
IV:T-14/-20∈ (−∞, 74.8611) -3.6523 2.1559
IBudget∈ (−∞, 69.5000) -9.3064 3.1220
IWeeks∈ (−∞, 9.5000) 0.5816 2.6241
IWeeks∈ [9.5000, 10.5000) -4.3726 2.6547
IS:T-14/-20∈ (−∞, 74.8611) -1.7690 2.5688
IS:T-21/-27∈ (−∞, 74.1047) -0.2664 2.3623
IV:T-4/-6∈ (−∞, 0.1057) 6.9371 2.2008

Original Variable
Action -3.7873 2.5497 -2.6888 2.4691 -1.6895 3.0838
Adventure 4.7358 3.5770 4.7643 3.4842 4.6542 3.7732
Animation -8.5375 4.1268 -6.8518 4.4028 -1.9354 5.6046
Biography 4.4317 3.6187 0.1811 3.5270 0.1229 4.2324
Comedy -1.4082 3.6390 -1.6254 3.3573 -0.9595 3.7382
Crime 1.2918 2.2978 1.9982 2.1794 2.6461 2.7335
Drama -3.6228 3.0274 -2.9136 2.9511 -1.7884 3.6083
Family 11.1923 4.8659 9.1639 5.2832 2.6236 6.7679
Fantasy 9.6846 3.3023 9.4915 3.7590 12.8881 4.9159
Horror 1.9164 2.2681 1.7449 2.3979 3.0486 2.4376
Mystery 2.1528 2.4246 2.4099 2.4099 3.3377 2.4852
Romance 0.9066 2.5781 -1.2987 2.9160 -2.5919 3.3696
Sci-Fi 0.5080 3.2638 -1.0704 2.8807 -0.3705 2.6569
Thriller 1.9914 3.2745 0.4561 2.8743 0.8643 2.9379
PG 13.3045 7.3352 10.8373 6.6338 2.8901 5.4757
PG13 14.0101 7.2553 12.1703 7.0504 1.8691 6.8517
R 16.2428 7.2569 13.7877 7.0876 2.6378 6.6841
Budget -0.0114 0.0499 0.0535 0.0397 0.1182 0.0399
Weeks 0.0013 0.2890 0.3335 0.2221 0.3738 0.2768
Screens 2.9629 2.4792 6.1694 1.3899
S:T-21/-27 -0.1745 0.5421 -0.2272 0.6159 -0.1570 0.6610
S:T-14/-20 -0.4624 0.7546 -0.0958 0.8689 -0.9835 0.9393
S:T-7/-13 -0.2220 0.8379 -0.9921 0.9688 -1.2435 1.0695
S:T-4/-6 -0.2745 1.0264 0.3448 1.0422 0.2277 1.1775
S:T-1/-3 0.7616 0.7575 1.4817 0.7185 2.5070 0.7509
V:T-21/-27 -80.6518 30.3456 -90.4421 31.6774 -97.5186 31.6624
V:T-14/-20 18.8944 38.5757 33.1787 41.0211 19.4109 38.6929
V:T-7/-13 -34.8571 24.5486 -33.4308 25.6964 -45.2885 30.9011
V:T-4/-6 70.8133 25.6501 65.0400 26.0461 86.2881 27.2008
V:T-1/-3 8.9706 4.2187 11.8043 4.3072 18.9664 5.1687

R-square 0.8532 0.8455 0.7973
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Table A26: OLS-post-LASSO Estimates of Models whose Input Set Includes GUM Regres-
sors and Indicators From Figure A7

Variable Model 1 Model 2
Coefficient Robust S.E Coefficient Robust S.E

Indicator
IScreen∈(−∞,1.3385) -42.2872 13.2098 -56.5420 15.1019
IScreen∈(−∞,2.0375) -0.0514 1.8105 -3.1432 1.9225
IScreen∈(−∞,3.7025) -10.3197 4.5716 -12.1738 4.0516
IS:T-1/-3∈ (−∞, 73.1350) -4.6171 1.7198
IV:T-1/-3∈ (−∞, 0.4537) -9.9209 4.7654 -15.6941 5.5244
IBudget∈ (−∞, 69.5000) -6.5649 3.6927 -7.0845 4.3126
IWeeks∈ (−∞, 10.5000) -0.0838 4.3860
IScreen∈(−∞,2.0375) ∗ IWeeks∈ (−∞, 10.5000) -3.7377 4.4305

Original Variable
Family 13.0173 5.1538 13.3995 5.8497
R 0.0231 0.0529 -0.0016 0.0605
Weeks 4.4881 0.8043 4.6789 0.8435
S:T-1/-3 -14.5734 3.1721
V:T-4/-6 14.4344 3.8020 4.1407 4.0937

R-square 0.8418 0.8006

with the data. For researchers seeking to understand the effects of multiple explanatory
variables we are proposing a hybrid strategy where the machine learning algorithm is
first used to identify the complex interactions that need to be accounted for. We illustrate
this approach using RT and future work can show how to adopt it to work with SVR
with linear kernels. Statistical inference can be undertaken, although procedures such as
Cattaneo, Jansson, and Ma (2019) can be considered to deal with the inclusion of many
covariates in a first-step estimate entering a two-step estimation procedure. We believe
these estimation strategies could be valuable in settings where theory does not provide
guidance to an appropriate model to explain how the data was generated.

F.21 Results of Relative Prediction Efficiency by MSFE and MAFE

The two panels of table A27 report the median MSFE and MAFE from the prediction error
exercise outlined in the preceding section for the 10 different econometric strategies listed
in panel A of table 2 in the main text. Each row of the table considers a different size for
the evaluation set and to ease interpretation all MSFEs and MAFEs are normalized by the
MSFE and MAFE of the HRCp. Panel A of table A27 presents results for forecasting open
box office and panel B demonstrates results corresponding to forecasting retail movie unit
sales. Notice that for open box office, all remaining entries for MSFE are larger than one,
indicating inferior performance of the respective estimator relative to HRCp. In general,
the three model averaging approaches and the model selected by AIC perform nearly
as well as HRCp. For movie unit sales, HPMA yields the best results in the majority of
experiments. However, the gains from using HPMA in place of PMA appear quite small.
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The results in table A27 also stress the importance of social media data for forecast
accuracy. Models that ignore social media data (MTV) perform poorly relative to all other
strategies. In contrast to Lehrer and Xie (2017) we find that the post-Lasso methods, in-
cluding the double-Lasso method, OLS post Lasso and model averaging post Lasso per-
form poorly relative to HRCp in this application. This likely arise since all movies released
are considered rather than only those with budgets ranging from 20 to 100 million dollars,
thereby increasing the presence of heteroskedasticity in the data.

Table A28 examines the performance of alternative model screening strategies listed
in panel B of table 2 in the main text relative to HRCp. We observe small gains in forecast
accuracy from model screening relative to the benchmark HRCp. The hetero-robust meth-
ods yields slightly better results than homo-efficient methods for forecasts of box office
opening. In contrast, when forecasting retail movie unit sales, the homo-efficient ARMS
demonstrates better results than the other screening methods. Taking these findings to-
gether with the results contrasting PMA to HPMA table A27 illustrate that there are small
gains in practice from using econometric approaches that accommodate heteroskedastic-
ity.

Table A29 demonstrates that there are very large gains in prediction efficiency of either
the recursive partitioning algorithms or the suite of advanced machine learning strategies
listed in panel D of table 2 of main text relative to the benchmark HRCp. The subscript
below RF and MARF refer to the number of randomly chosen explanatory variables used
to determine a split at each node. For both outcomes when nE is small, machine learn-
ing methods have dominating performance over the HRCp. Popular approaches such as
bagging and random forest greatly outperform the benchmark. However, our proposed
MASVRLS has the best performance when evaluated by either MSFE or MAFE. We find
larger gains from the hybrid strategy involving support vector regression instead of tree
based strategies with open box revenue relative to retail movie unit sales. However, the
percentage gain in forecast accuracy is higher for retail movie unit sales due to the smaller
sample size. We find the relative performance of HBART to the tree based procedures im-
proves with the larger sample used to predict DVD and Blu-Ray sales. Adding model
averaging tends to lead to gains of 10% between either SVRLS and MASVRLS or bagging
and MAB. Random forest methods, both conventional and model averaging, have mod-
erate performance in all cases. Note that as nE increases, all statistical learning methods
observe decreases in performance. We also stress that there are large gains in performance
of all strategies in table A29 relative to the results presented in tables A27 and A28.

Figures A8 to A10 correspond to the results of tables A27 to A29, respectively. In each
figure, subplots (a) to (d) correspond to MSFE-Open Box, MAFE-Open Box, MSFE-DVD,
and MAFE-DVD, where the solid, dashed, dash-solid, and dots line represent the results
of n = 10, 20, 30, and 40, respectively. We list the methods in the x-axis and the y-axis
reports the risks. We highlight the best method for each n with a circle.
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Figure A8: Demonstrate Results of Table 3 in Figures
G
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Figure A9: Demonstrate Results of Table 4 in Figures
G
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Figure A10: Demonstrate Results of Table 5 in Figures
B
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