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Abstract

This paper considers the application of semiparametric methods to estimate propensity
scores or probabilities of program participation, which are in central in program evaluation
methods. To evaluate the practical bene�ts we use data from the NSW experiment, CPS
and PSID. We compare treatment e¤ect and evaluation bias estimates using propensity
scores estimated from parametric logit, semiparametric single index and semiparametric
binary quantile regression models. We �nd that the quantile regression model exhibits the
smallest average absolute bias error. Our results suggest that it is important to account
for very general forms of heterogeneity in (semiparametric) estimation of the propensity
score.
JEL codes: C14, C81, C99, H53, I38
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1 Introduction

An increasing body of evidence has found that there is signi�cant diversity and heterogeneity

in response to a given policy. Heckman (2001) argues that this has profound consequences for

economic theory and for economic practice. In particular, accounting for heterogeneity may

improve the performance of non-experimental estimators. In this paper, we introduce and eval-

uate the performance of a semiparametric propensity score matching estimation strategy that

explicitly accounts for heterogeneity in response across observed covariates along the conditional

willingness to participate in the treatment intervention distribution.

Matching estimators evaluate the e¤ects of a treatment intervention by comparing outcomes

such as wages, employment, fertility or mortality for treated persons to those of similar persons

in a comparison group. The use of the propensity score as a basis for matching treated and

untreated individuals (and thus for evaluating the magnitude of treatment e¤ects) is becoming

increasingly common in clinical medicine, demographic and economic research. The propensity

score is de�ned as the conditional probability of being treated given the individual�s covariates

and requires the assumption of selection on observables.1

Existing studies use parametric estimators of binary response models, such as the probit and

logit which imposes strong distributional assumptions on the underlying data. In particular, the

dangers of misspeci�cation may be severe if the error terms are not independent and identically

distributed from their known parametric distributions.2 Kordas (2004) outlines the bene�ts

of using Manski�s (1975, 1985) binary regression quantiles to provide consistent estimates of

the conditional probability at di¤erent points of the distribution. This estimator avoids the

distributional restrictions embedded in the parametric approach and has the advantage that

it is robust and can accommodate heteroskedasticity of very general form. This property is

extremely valuable in our setting as the estimator can accommodate problems of heterogeneity,

self-selection and misclassi�cation.
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Todd (1999) presents the only other study that we are aware of that considers matching using

semiparametrically estimated propensity scores. She considers matching using the estimated

probabilities from both the semiparametric least squares estimator of Ichimura (1993) and

the quasi maximum likelihood estimator of Klein and Spady (1993).3 Her Monte Carlo study

demonstrates that the gains from semiparametric procedures relative to parametric alternatives

are greatest when either the systematic component of the model is misspeci�ed or when the

error distribution is highly asymmetric.

Our approach o¤ers several additional bene�ts for empirical researchers. First, this estimator

does not require the researcher to select higher order or interaction terms to ensure balancing

of covariates across the treatment and control groups. While recent work in economics (Dehejia

and Wahba, 2002) has proposed the use of balancing tests to determine if additional higher

order or interaction terms should be included in the estimates of the propensity scores but does

not provide guidance on precisely which of these terms should be included.4 Second, quantile

treatment e¤ects are simple to calculate permitting an examination of the average treatment

e¤ect on the treated at di¤erent points along the probability of participation distribution.

2 Framework

Let Di = 1 indicate if person i received treatment and Di = 0 if not. Let Y1i and Y0i are

the outcome of interest if person i received treatment or did not respectively. Evaluators are

often interested in the average e¤ect of the treatment on the treated (ATTD=1(X)), which can

be de�ned conditional on some characteristics X as ATTD=1(X) = E(Y1 � Y0jX;D = 1) =

E(Y1jX;D = 1) � E(Y0jX;D = 1). In the absence of a randomized control group, matching

methods allow for the construction of a comparison group for the treated under the assumption

that conditional on observed covariates assignment to treatment is random. In many empirical
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applications, the dimension of these observed characteristics is high and Rosenbaum and Rubin

(1983) suggest using a scalar measure P (X); where

P (X) = Pr(Di = 1jX): (1)

is the propensity score.5

Implementation involves two steps. First, equation 1 is estimated to calculate the propensity

score. Second, a matching algorithm is used to construct the matched comparison group for the

treated. Algorithms di¤er in the weights they place on individuals in the comparison group.

2.1 Econometric Methods

Let D� denote the latent propensity to participate index. D� measures the (indirect) latent

utility di¤erential between receiving and not receiving the treatment. We consider three es-

timation approaches, a parametric logit, the semiparametric single-index model of Klein and

Spady (1993), and Manski�s (1975, 1985) binary regression quantiles. The logit and single-index

estimators maximize the familiar log-likelihood of the binary response model,

`(�) = n�1
nX
i=1

Di log(Pi) + (1�Di) log(1� Pi); (2)

di¤ering from each other only in the speci�cation of Pi � Pr(Yi = 1jX 0
i�). The homoskedastic

logit model is given by

PLi = L(X
0
i�=�) �

1

1 + exp(�X 0
i�=�)

: (3)

In this model, the covariates exert a pure location e¤ect on the latent utility di¤erential. To

make the model more �exible researchers often include higher order and interaction terms which

are selected based on balancing tests results (i.e. Hotelling T 2 tests for di¤erences in means)

which determine whether a covariate adds information on the selection process conditional on

the propensity score.
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The semiparametric procedures avoid the distributional and other restrictions embedded in

the parametric speci�cation of Pr(Di = 1jXi): First, we consider the semiparametric single-

index model of Klein and Spady (1993). To de�ne this estimator, let K(�) be a kernel function

(in this paper we use a Gaussian kernel function), hn be a bandwidth parameter that converges

to zero as n becomes large, and de�ne the leave-i-out estimate of Pr(Y = 1jX 0
i�) by

~Pi =
X
j 6=i

DjK

�
X 0
i� �X 0

j�

hn

�,X
j 6=i

K

�
X 0
i� �X 0

j�

hn

�
:

To avoid anomalous behavior at the tails, let " be a small positive number and de�ne

P SIi = maxf";minf1� "; ~Pigg: (4)

Klein and Spady (1993) have shown that, under some additional regularity conditions, if nh6n !

1 and nh8n ! 0 as n ! 1, the estimator converges at the parametric root-n rate to an

asymptotically normal random variable, and achieves the semiparametric e¢ ciency bound.

Our second semiparametric estimation strategy is Manski�s (1975, 1985) binary regression

quantiles. We assume the following linear quantile speci�cation of D�
i

QD�
i
(qjXi) = X

0
i�(q); q 2 (0; 1): (5)

where �(q) is the coe¢ cient vector of the q-th conditional quantile. Using the equivariance

property of quantile functions with respect to monotonic transformations, we can write the

conditional quantile function of Di = 1fD�
i � 0g as (See Kordas (2004) equation 6)

QDi(qjXi) � Q1fD�
i�0g(qjXi) = 1fQD�

i
(qjXi) � 0g = 1fX 0

i�(q) � 0g: (6)

This estimator is the binary response analogue to the linear quantile regression estimator in-

troduced by Koenker and Bassett (1978) and o¤ers a robust and e¢ cient semiparametric al-

ternative to commonly used parametric models. From an empirical point of view, their main
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advantage is their ability to model very general forms of population heterogeneity by allowing

the coe¢ cient vector to vary across the conditional quantiles of the dependent variable.

Estimates of the scaled coe¢ cients �(q) such that jj�(q) = 1jj, are obtained by solving the

quantile regression problem

�(q) = argmina:jjajj=1

(
SN(a) = N

�1
NX
i=1

�q(Di � 1fX 0
ia � 0g)

)
; (7)

where �q(u) = (q � 1fu < 0g) � u, and SN(�) is the score function. The score function is a

multimodal step function so optimization is performed using the simulated annealing algorithm

of Go¤e et al. (1994). The discontinuities of the score function also a¤ect the asymptotic

behavior of the estimators that have been shown to converge at the slow N1=3 rate to a non-

gaussian random variable (Kim and Pollard, 1990). To overcome these problems Horowitz

(1992) smoothed the median score function and derived a smoothed median estimator that

is asymptotically normally distributed. Kordas (2004) extended these results to show joint

asymptotic normality of families of smoothed binary quantile estimates and showed how these

smoothed estimates may be optimally combined for e¢ cient estimation. Note the single index

and binary regression quantile models are not nested.

Since our focus is on estimating propensity scores only unsmoothed estimates will be com-

puted here. The probabilities are computed by noting that the quantile regression model in

(6) implies that if an individual�s q-th conditional quantile X 0
i�(q) is (approximately) equal to

zero, his conditional probability of receiving treatment is (approximately) equal to 1� q, i.e.,

Pr(Di = 1jX 0�(q) = 0) = 1� q: (8)

Given estimates of �(q) over a grid � = fq1; q2; � � � ; qM jq1 < q2 <; � � � < qMg of quantiles, Kordas

(2004) shows how this equation may be used to derive semiparametric interval probability

estimates. Let

q̂i = argminq2�fq : X 0
i�(q) � 0g (9)
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be the smallest quantile in the grid for which i�s index function is positive. Then an interval

estimate of the conditional probability Pi;1jXi � Pr(Di = 1jXi) is given by

P̂i;1jXi(�) = [1� q̂i; 1� q̂�1;i); (10)

where q̂�1;i denotes the quantile immediately preceding q̂i. In our application, � = f0:05; 0:10; � � � ; 0:95g,

so, for example, if i�s quantile indices are negative for quantiles below 0:70 and are positive for

quantiles 0:70 and above, q̂i = 0:70; and P̂i;1jXi(�) = [0:30; 0:35).

2.2 Matching Algorithm

Since the estimated choice probabilities from binary regression quantiles are discrete (interval

probabilities) the average treatment e¤ect on the treated (ATTD=1(X)) is calculated using strat-

i�cation matching. At each probability interval, we compute the di¤erence in average outcomes

of treated and controls, providing an estimate of the quantile treatment e¤ect (ATTD=1(X)q),

q = 1; 2; :::; Q

ATTD=1(X)
q =

P
i2Lq Y1i

N1
q

�
P

j2Lq Y0j

N0
q

(11)

where N1
q and N

0
q number of treated and untreated individuals at quantile q respectively. The

average treatment e¤ect on the treated is computed using a weighted (by the number of treated)

average of these quantile treatment e¤ects as

ATTD=1(X) =

QX
q=1

ATTD=1(X)
q �
P

i2N1
q
DiP

i2N1 Di

(12)

where Q is the total number of quantiles estimated and N1 is the total number of treated

individuals that are matched. Assuming independence of outcomes across units, the variance

of ATTD=1(X) is given by

V ar(ATTD=1(X)) =
1

N1

(
V ar(Y1i) +

QX
q=1

N1
q

N1
�
N1
q

N0
q

V ar(Y0j)

)
(13)
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Bootstrapped standard errors could also be calculated and are presented as we are matching

on the estimated and not the actual propensity score.6 Since the estimated participation prob-

abilities from the logit and Klein and Spady (1993) models are continuous, we consider a larger

variety of matching algorithms that are described in Smith and Todd (2004).

3 Returns to the NSW Job Training Program

3.1 Data

Following LaLonde (1986), numerous studies have examined whether econometric (non-experimental)

estimators recover impacts on post-intervention outcomes that are similar to those produced

from a randomized experiment such as the National Supported Work Demonstration program

(NSW).7 Experimental treated units are combined with non-experimental comparison units

drawn from two national survey datasets; CPS and PSID. Treatment e¤ect estimates obtained

using econometric estimators are then compared with the benchmark results from the experi-

ment. This exercise presents challenges for non-experimental estimator since there are substan-

tial di¤erences in demographic and economic characteristics between individuals in the CPS,

PSID and the experimental samples.

Studies evaluating propensity score matching with this data initially found that these meth-

ods were able to replicate experimental treatment e¤ects (Dehejia and Wahba (1999)). More

recent evidence calls these �ndings in question (Smith and Todd (2004)) and indicate that ac-

counting for permanent unobserved heterogeneity does lower the estimated bias with propensity

score matching estimators. We follow Smith and Todd (2004) by considering three alternative

experimental samples from the NSW data (LaLonde�s full sample, the Dehejia and Wahba

extract, an extract containing subjects assigned in the �rst four months of the program) in

addition to the survey data.8
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3.2 Propensity Score Estimates

In practice, researchers focus on the quality of matches obtained from propensity score estima-

tion and speci�cations are selected with the best balance between matched individuals. In our

application, we consider two alternative speci�cations for the binary response model i) based

on Dehejia and Wahba (1999,2002) that includes higher order and interaction terms to sat-

isfy balancing tests and ii) omitting higher order and interaction terms since binary regression

quantiles have the desirable property of being robust to heteroskedasticity of general forms.

Note, a slightly di¤erent set of higher order and interaction terms are used for speci�cations

with the CPS and PSID samples.9

This empirical approach used in the propensity score matching literature to create spec-

i�cation one di¤ers dramatically from traditional diagnostics used to assess binary response

models which are considered with parameter estimates that are used in calculating propensity

scores. Likelihood ratio tests between the logit and heteroskedastic logit strongly reject the null

hypothesis of a homoskedastic residual.10 Thus, the parametric homoskedastic binary response

models are misspeci�ed.

A graphical examination of the normalized quantile, logit and single index model coe¢ cient

estimates across quantiles indicate disagreements between binary regression quantile estimates

and the other approaches only appear at the higher quantiles as the parametric and single

index models under predict the probability of participation. The general pattern of over and

under prediction by the logit models could also be used to provide further evidence of the

restrictiveness of the parametric model which tend to extrapolate the behavior of individuals

near the mean to individuals that belong in the tails of the propensity to participate distribution.

In general, for treatment e¤ects and evaluation bias estimates the results are similar from

propensity scores estimated using the Klein and Spady (1993) and logit model so we will focus

our discussion on binary regression quantiles.11
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3.3 Treatment E¤ects

Table 1 presents estimates for both speci�cations of the causal e¤ect of the NSWWork Demon-

stration on earnings in calender year 1978 based on strati�cation matching with binary regres-

sion quantile propensity scores. The rows di¤er solely in the number of bins that are employed

excluding the lowest probability bin in the top panel. While the experimental impact is cap-

tured within a 95% bootstrapped con�dence interval, the estimates are extremely accurate for

each experimental sample matched with the PSID (even numbered columns). Notice that the

results with twenty bins are practically identical between speci�cations 1 and 2. Further, the

results do not appear to be sensitive to the number of bins used to stratify the sample match.

The results improve with fewer bins for some subsamples but weaken for others such as column

2 and 6 whose estimated magnitude decreases by approximately 67% when only �ve bins are

used.

Table 2 presents Hotelling T 2 tests for di¤erences in means (i.e. balance) within each quintile

probability interval. Each entry lists the number of covariates which failed the test at the 5%

level.12 Notice that there are signi�cant failures at the lowest probability interval capturing

the dissimilarities between the experimental and CPS non-experimental samples. The bottom

panel of Table 1 demonstrates a dramatic reduction in the estimated magnitude of the treatment

e¤ect for the columns matched with CPS sample when the lowest probability interval bin is

included.13

In Figure 1, we graph quantile treatment e¤ects for the sample that corresponds to spec-

i�cation 2 and column 6 of Table 1. With balanced covariates the quantile treatment e¤ects

have a clear interpretation. Notice that the training program had a negative impact for those

subjects in the middle quantiles who tend to be either blacks or Hispanics that had low earnings

in 1974 but high earnings in 1975 if the control group was drawn from the PSID. Similarly, the

largest gains from NSW were achieved at the extreme quantiles containing individuals with low
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earnings in 1975.

3.4 Evaluation Bias Estimates

An alternative approach to evaluate non-experimental estimates is to match the randomized

out control group with the non-experimental samples. As neither group has received the inter-

vention the di¤erence in earnings between matched individuals from each experimental control

group and non-experimental sample should be zero. Any deviation is evaluation bias. Table 3

presents direct estimates of the bias using strati�cation matching with binary regression quan-

tile propensity scores. Notice that with the exception of column 4 of speci�cation one, the bias

is of the order of a few hundred dollars and is less than 15% of the experimental treatment

impact in columns 2, 3, 5 and 6 respectively. Unlike the treatment e¤ect estimates, including

the lowest probability quintile has little e¤ect on the bias since fewer individuals are assigned

to this probability interval.

The evaluation bias increases by approximately $200 in column 1- 3 when the higher order

and interaction terms are omitted from the estimating equation. Column 6 continues to exhibit

low bias whereas column 5�s bias is also reduced in absolute value. Surprisingly we �nd a

high degree of bias in the Dehejia and Wahba samples, columns which exhibit low bias with

parametric propensity scores.

To uncover an explanation as to why the evaluation bias calculated using semiparametric

propensity scores exceeded the estimate obtained using parametric propensity scores in column

4 of Table 4 we conducted a more detailed examination of how the estimated bias di¤ers across

quantiles. Figure 2 presents a graph of the quantile bias e¤ects at each interval for both

parametric and semiparametric propensity scores for speci�cation 1. Notice that in almost

all quantiles the semiparametric procedure exhibits lower bias. The results in Table 3 (and )

present a number of treated individuals weighted average of these quintile biases and suggest
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that the lower bias for the Dehejia and Wahba subsample is based in part on having the larger

biases across quantiles cancel out.

To provide additional guidance for empirical researchers on the performance of propensity

score matching algorithms we compare the average absolute bias error of our matching algorithm

with a variety of di¤erent matching algorithms based on parametric propensity scores.14 For

each matched outcome we calculate the absolute bias error

Bias error = jY1i � Ê(Y0ijP (Xi); Di = 0)j

where Ê(Y0ijP (Xi); Di = 0) is calculated by the algorithm under investigation. The average

absolute bias error is calculate by dividing the sum of these bias errors by the number of

individuals in the treatment group who were successfully matched. Table 4 reports summary

statistics on the average absolute bias error.15

Notice that with one exception, the smallest average absolute bias error is attained using

strati�cation matching with propensity scores calculated by binary regression quantiles. In gen-

eral, bias error estimates obtained by strati�cation matching procedures are smaller than the

nonparametric and distance metric algorithms. In general when using parametric propensity

scores algorithms that use a larger distance produce smooth results; whereas narrow inter-

vals produce larger bias errors on average. In part, this occurs since fewer individuals have

matches as the distance shrinks. The results from speci�cation 1 �nd that Kernel and local

linear matching estimator exhibit signi�cantly less bias error than nearest neighbor or caliper

matching algorithms. Overall, it appears that using 20 bins produces estimates with the small-

est mean squared error. The results suggest that adding the lowest probability quantile to the

strati�cation matching algorithm increases bias up to an average of $500 and $670 per treated

participant for speci�cation 1 and 2 respectively.

The increased average size of the bias error from parametric procedures ranges from slightly

more than $55.00 to approximately $5200 for speci�cation 1. As a percentage of the estimated
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treatment impact this range is equivalent 6.2% to 586.9%. For speci�cation 2, strati�cation

matching using parametric propensity scores does exhibit smaller bias error for column 3.16

Of the remaining columns, the size of the average bias error ranges from $91 to $6250 or

10.3% to 706% of the experimental treatment impact per matched treated individual. While

the semiparametric procedure yielded the smallest average absolute bias error in 11 of the 12

columns in Table 4, the number is still large relative to the experimental impact. This casts

doubt as to whether all observables were included in the estimation of the propensity score

and is a potential cause for concern for empirical researchers interested in using these methods.

After all, the matched individuals using one nearest neighbor matching intuitively should be

most alike, yet the average absolute bias error is extremely large.

Strati�cation matching with parametric and binary regression quantile propensity scores

yield similar average absolute bias error but wildly di¤erent treatment e¤ects. In general if one

excludes the lowest probability bin (0.0-0.05%) the procedures rarely placed individuals within

the same interval. This is demonstrated by examining the scarcity of individuals lying on the

prime diagonal of Table 5 and the large number of individuals residing in the o¤ diagonal ele-

ments. This table presents information on the horizontal rows of which bin the semiparametric

procedure assigns and the columns provide the bins that the parametric procedure assigns.

Notice that ignoring the lowest probability quantile, approximately 30% of all the observations

fall in the same probability bin for the two methods. For all 12 subsamples the similarities

range between 22%-43%.

The improved performance of strati�cation matching relative to other algorithms with para-

metric propensity scores is due in part to the balancing tests which occur over large intervals.

Replicating these tests in smaller bins (1%) indicate substantial failures with each sample. In

contrast, using smaller bins constructed by binary regression quantiles we found little evidence

of increased failures in balancing tests.
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Finally, we compared binary regression quantiles (Table 4) to the Klein and Spady (1993)

estimator. From a heterogeneity perspective the major distinction between these estimators

is that the former allows for very general forms while the latter is more limited only allowing

heterogeneity through the index. The results using speci�cation two are provided in Appendix

Table 4. Notice again that the strati�cation matching estimates with binary regression quantiles

are substantially lower in absolute bias error for nearly all columns.

4 Conclusions

In situations with non-experimental data matching methods provide a means to estimate pro-

gram impacts when the variables determining assignment to treatment are observed and the

support of treatment and comparison groups overlap. Since the use of the propensity score

as a basis for estimating treatment e¤ects is becoming increasingly common in research in a

variety of disciplines researchers should test for possible model misspeci�cation and if present,

consider the methods described above to improve inference and reduce concerns regarding the

speci�c higher order and interaction terms to include when estimating the treatment program

participation equation.
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Notes

1The assumption of selection on observables requires that conditioning on the observed

variables the assignment to treatment is random. Propensity score matching (Rosenbaum and

Rubin (1983)) reduce the dimensionality of having to match participants and non participants

on the set of conditioning variables (X) by matching solely on the basis estimated propensity

scores (P (X)).

2For example, Horowitz (1993) demonstrates that misspeci�cation is likely to be severe under

heteroskedasticity and bimodality.

3These methods estimate a conditional mean and overcome the distributional restrictions

embedded in the parametric approach but allows for only limited forms of heterogeneity. Note,

we also consider the Klein and Spady (1993) estimator.

4See Dehejia (2004) and Smith and Todd (2004) for a demonstration of the di¢ culties in

choosing the appropriate speci�cation of higher order and interaction terms.

5This estimator assumes i) E(Y0jP (X); D = 1) = E(Y0jP (X); D = 1) ( 0 < Pr(D = 1jX) <

1) and ii) .

6Notice that if a quantile contains numerous treated units and few controls it will increase

the variance ATTD=1(X). Quantiles with few treated and many controls work in an opposite

manner but receive little weight in the calculation of ATTD=1(X).

7Our results uses the same data as in LaLonde (1986), Heckman and Hotz (1989), Dehejia

and Wahba (1999, 2002, 2004), Abadie and Imbens (2002) and Smith and Todd (2002, 2004)

among others, making it easier to draw comparisions.

8See Appendix Table 1 or Smith and Todd (2002) for further information on these datasets.

9The selection of variables to include in the estimation of the propensity score is very im-

portant since even small changes in the estimated probabilities can dramatically a¤ect the

magnitude of treatment e¤ects in the matching stage and cause a substantial di¤erence in the
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amount of bias present in the matching estimator. See Heckman, Ichimura, Smith and Todd

(1998), Smith and Todd (2002) or Dehejia and Wahba (2004) for a discussion. Finally it is

worth noting that while Dehejia and Wahba (1999, 2002) did not �nd evidence that the treat-

ment e¤ect estimated was sensitive to the inclusion of these terms, they stress the importance

of variable selection to ensure that the balancing hypothesis is satis�ed.

10This assumption is rejected below the 5% level for all columns and both speci�cations with

the exception of column 5 in speci�cation 1 which is rejected at the 15% level.

11For several samples, we experimented with di¤erent bandwiths with Klein and Spady (1993)

and the results were robust. The full set of results are available from the authors by request.

12The results do not change signi�cantly if we report the 10% or 20% level.

13Note these individuals are generally not included in the parametric matching procedures

due to trimming conditions as in Dehejia andWahba (1999). See Appendix Table 2 for estimates

corresponding to logit propensity scores

14We also considered Abadie and Imbens (2004) matching procedure with homoskedastic

and heteroskedastic weighting matrices and either one or four individuals matched. The results

indicated larger absolute bias error than local linear matching with a bandwidth of 0.01.

15For the parametric propensity score we match on the estimated propensity score with the

exception of kernel and local linear matching estimators where we match on the odds ratio

due to the choice based nature of the sample. Heckman and Todd (1995) demonstrate that

matching methods can be applied with the odds ratio to gain consistent estimates when the

sample is choice based. Note failure to account for choice based samples should not a¤ect

nearest neighbor or strati�cation point estimates. Finally, following Smith and Todd (2004) we

investigated the sensitivity of our results to alternative seeds for several of these algorithms.

There were no major shifts in the magnitude of the absolute bias error.

16This column requires further study as it exhibited a signi�cant balancing test failures.
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Table 1: Treatment Effects Estimates with Binary Regression Quantile Propensity Scores using Stratification Matching
SPECIFICATION ONE SPECIFICATION TWO

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Experiment
Impact

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49

20 Bins 85.44
(618.77)

665.55
(900.59)

1925.19
(678.11)

1390.79
(675.37)

2779.06
(1047.0)

2697.48
(1624.8)

96.62
(587.43)

652.04
(874.25)

2039.67
(831.12)

1406.82
(705.95)

2556.02
(1196.2)

2418.79
(1619.5)

10 Bins 114.13
(508.81)

773.91
(886.37)

1391.97
(935.18)

1206.23
(684.84)

2051.61
(1242.6)

2922.78
(1329.7)

-201.02
(584.42)

-179.87
(1234.5)

2145.43
(866.29)

1441.15
(674.73)

2750.53
(1202.6)

2989.07
(1326.6)

5 Bins 221.76
(667.10)

126.80
(945.53)

2400.79
(961.73)

1258.74
(669.76)

2635.53
(1903.0)

963.14
(1933.2)

-34.71
(593.42)

-568.94
(1102.3)

2205.51
(873.32)

1436.19
(668.59)

2640.13
(1226.4)

2852.39
(1143.1)

Including Lowest Probability Bin
20 Bins -627.70

(574.16)
476.12

(841.31)
223.27

(833.20)
1108.07
(681.35)

592.24
(1127.3)

1834.56
(1635.9)

-881.44
(535.94)

389.32
(874.25)

684.29
(736.18)

1014.49
(710.99)

1070.34
(1057.5)

1664.49
(1509.2)

10 Bins -850.68
(649.83)

516.66
(837.60)

253.79
(804.42)

720.96
(669.84)

-116.96
(1092.5)

1769.43
(1337.1)

-1267.4
(550.35)

-561.83
(1284.1)

470.36
(779.58)

825.42
(702.81)

621.01
(1068.0)

1816.20
(1291.6)

5 Bins -1157.1
(622.46)

-838.17
(854.67)

73.13
(891.22)

488.72
(735.58)

-668.71
(1075.1)

-391.72
(1903.0)

-1447.6
(510.77)

-1455.2
(1036.5)

-206.31
(820.30)

577.36
(700.04)

156.02
(1042.2)

1274.53
(1153.3)

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications.
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Table 2: Balancing Test Results
SPECIFICATION ONE SPECIFICATION TWO

Quantile  Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

0.05 11 2 14 4 12 4 7 3 10 3 10 3
0.05 0.10 0 0 0 0 1 0 0 0 3 0 0 0
0.10 0.15 0 0 0 0 0 0 0 0 0 1 0 0
0.15 0.20 0 0 1 0 0 2 0 0 3 0 0 0
0.20 0.25 0 0 0 0 0 0 0 2 0 0 0 0
0.25 0.30 0 2 0 0 0 0 0 0 0 0 0 0
0.30 0.35 0 2 0 0 0 0 2 0 2 0 0 0
0.35 0.40 3 1 0 0 0 0 0 0 0 0 1 0
0.40 0.45 0 0 0 0 0 1 0 0 0 0 3 0
0.45 0.50 0 0 1 0 0 0 0 0 2 0 0 0
0.50 0.55 1 0 0 1 0 0 0 0 0 0 0 0
0.55 0.60 0 0 0 0 0 0 1 0 6 0 0 0
0.60 0.65 0 0 0 0 0 0 0 0 0 0 0 0
0.65 0.70 0 0 0 0 0 0 4 0 0 0 2 0
0.70 0.75 0 1 0 0 0 0 2 1 1 0 2 0
0.75 0.80 0 2 0 0 0 0 0 0 0 0 0 0
0.80 0.85 0 0 0 0 0 1 0 0 0 0 0 0
0.85 0.90 0 0 0 0 0 0 1 0 1 0 0 0
0.90 0.95 0 0 0 0 0 0 0 0 0 0 0 0
0.95 1.00 0 0 0 0 0 0 0 0 0 0 0 0
Note: Number of unbalanced covariates at the 5% level reported.
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Table 3: Evaluation Bias Estimates with Binary Regression Quantile Propensity Scores using Stratification Matching
SPECIFICATION ONE SPECIFICATION TWO

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Experiment
Impact

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49

20 Bins -336.54
(480.81)

-139.93
(810.83)

161.28
(741.64)

1673.97
(746.29)

-589.35
(461.54)

515.52
(641.74)

436.09
(640.18)

1916.99
(704.56)

-639.12
(680.63)

153.73
(972.87)

2556.02
(1196.2)

2418.79
(1619.5)

10 Bins -335.03
(594.49)

241.27
(853.37)

384.81
(771.63)

1465.84
(812.25)

-908.48
(447.11)

-903.74
(23.12)

642.51
(640.09)

1648.89
(755.05)

-536.74
(716.03)

674.81
(995.20)

2750.53
(1202.6)

2989.07
(1326.6)

5 Bins -405.13
(556.55)

-735.40
(861.99)

1138.15
(781.37)

1666.38
(649.94)

-983.01
(413.25)

-1195.69
(1124.9)

732.39
(652.39)

1586.93
(590.43)

39.20
(805.45)

555.40
(777.46)

2640.13
(1226.4)

2852.39
(1143.1)

Including Lowest Probability Bin
20 Bins -319.93

(482.99)
-26.65

(872.13)
271.95

(701.25)
1486.15
(767.14)

340.51
(817.92)

-214.48
(1000.8)

-1387.62
(458.99)

292.88
(666.71)

-17.52
(589.98)

1630.89
(716.22)

-1442.96
(641.02)

-614.39
(1008.24)

10 Bins -1215.47
(560.22)

-91.68
(833.26)

-573.74
(624.82)

863.00
(831.63)

-1371.57
(713.60)

376.71
(911.09)

-1648.51
(430.82)

-1150.33
(1153.4)

-418.66
(635.01)

896.64
(719.66)

-1727.59
(690.56)

-506.14
(981.67)

5 Bins -1568.71
(556.55)

-1359.71
(845.89)

-650.74
(678.53)

744.53
(698.07)

-1843.34
(669.55)

-829.00
(976.36)

-2003.59
(423.29)

-1988.88
(1101.5)

-948.47
(621.08)

729.50
(636.01)

-2077.87
(725.08)

-914.14
(866.48)

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications.
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 Table 4: Average Absolute Bias Error
SPECIFICATION ONE SPECIFICATION TWOMatching Algoritm

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Nearest Neighbor 1
W/O Common Support

6531.57
(5746.5)

6515.78
(8011.1)

5043.09
(5375.8)

5231.05
(5190.2)

5956.38
(6444.2)

5834.49
(6005.6)

6495.40
(5719.1)

6065.43
(6199.8)

6073.86
(5848.0)

5027.43
(6518.4)

6200.70
(6322.6)

5657.73
(5847.6)

Nearest Neighbor 10
W/O Common Support

6540.42
(5840.8)

6515.78
(8011.1)

5141.34
(5426.0)

5231.05
(5190.2)

6100.74
(6488.0)

5834.49
(6005.6)

6466.16
(5740.2)

6065.43
(6199.8)

5953.66
(5963.3)

5027.43
(6518.4)

6298.87
(6309.0)

5657.73
(5847.6)

Nearest Neighbor 1 W.
Common Support

6544.23
(5779.5)

6515.78
(8011.1)

4996.16
(5450.1)

5231.05
(5190.2)

5983.31
(6502.3)

5834.49
(6005.6)

6561.55
(5785.3)

6065.43
(6199.8)

5867.80
(5834.5)

5027.43
(6518.4)

6500.32
(6476.5)

5657.73
(5847.6)

Nearest Neighbor 10
W. Common Support

6597.81
(5820.5)

6515.78
(8011.1)

5109.14
(5587.4)

5231.05
(5190.2)

6077.74
(6564.0)

5834.49
(6005.6)

6551.98
(5769.2)

6065.43
(6199.8)

5989.54
(5978.8)

5027.43
(6518.4)

6077.74
(6564.0)

5657.73
(5847.6)

Kernel (Bandwidth
0.04)

5155.23
(3738.3)

5146.12
(4086.8)

4536.32
(3878.1)

4746.40
(4204.6)

5329.49
(4378.1)

5051.71
(4588.3)

5711.01
(4405.8)

7105.71
(5955.1)

4819.80
(4509.0)

6596.85
(5487.0)

5415.97
(4940.4)

6055.22
(5164.6)

Kernel (Bandwidth
0.01)

4987.96
(3839.0)

5216.04
(4335.5)

4307.99
(3962.5)

4788.36
(4339.8)

5034.23
(4671.2)

5300.18
(4720.5)

5664.64
(4572.7)

6553.06
(8027.5)

4841.42
(4720.5)

6012.27
(5287.2)

5484.68
(5198.4)

6209.80
(5337.7)

Local Linear
(Bandwidth 0.04)

4675.54
(3345.0)

4845.76
(3749.6)

4134.49
(3524.6)

4298.21
(3636.9)

4670.90
(3857.7)

4871.93
(4038.7)

4754.06
(3459.7)

5051.76
(3891.8)

4254.59
(3546.9)

4427.15
(3908.4)

4831.42
(3790.4)

4900.41
(4223.0)

Local Linear
(Bandwidth 0.01)

4705.60
(3379.1)

4995.25
(4105.4)

4145.24
(3498.1)

4353.05
(3895.5)

4743.96
(3883.0)

4813.54
(4356.2)

4680.02
(3464.6)

5059.29
(4100.5)

4150.35
(3613.5)

4460.52
(3917.0)

4743.96
(3883.0)

5046.30
(4247.1)

Caliper (0.01) 6505.52
(5758.3)

6600.18
(8138.6)

4978.08
(5365.1)

4945.54
(5098.1)

5928.61
(6492.5)

5529.58
(5879.6)

6791.76
(5844.4)

6340.82
(6428.5)

6128.93
(5760.1)

5168.24
(6612.4)

6357.82
(6499.1)

5769.70
(6022.4)

Caliper (0.001) 6860.53
(5981.8)

6175.00
(6132.1)

4942.18
(5057.3)

4434.86
(4838.2)

6841.91
(6621.5)

5976.01
(6788.6)

6619.27
(5791.0)

7073.58
(7189.0)

6448.08
(6387.0)

5683.33
(8489.1)

6380.06
(6218.1)

5092.21
(5162.5)

Caliper (0.0001) 6079.16
(5766.4)

6166.09
(6749.7)

5268.85
(5375.1)

4349.57
(5403.5)

5904.92
(6546.1)

6359.16
(8353.7)

6812.13
(6073.7)

8286.05
(10196.)

5788.78
(5185.5)

8622.76
(14083.)

7946.84
(6395.2)

4429.00
(5506.3)

Stratification 20 Bins
Logit

2131.75
(1879.6)

2272.02
(1884.1)

1798.77
(1825.0)

3206.00
(2961.3)

2953.57
(2382.5)

3519.43
(3140.3)

2360.50
(1879.6)

2356.05
(2890.4)

1798.77
(1825.0)

3206.00
(2961.3)

2953.57
(2382.5)

3519.43
(3140.3)

Stratification 20 Bins
BRQ

2054.54
(2192.5)

2210.44
(2312.4)

1741.31
(1833.8)

2864.02
(1997.1)

2929.14
(2032.3)

2234.41
(2063.6)

2451.74
(2633.4)

2585.78
(1968.3)

2372.92
(1611.9)

2596.23
(2174.3)

2511.21
(2099.7)

3133.87
(3444.3)

Stratification 10 Bins
BRQ

1768.95
(2364.5)

2113.56
(2833.4)

2654.56
(2412.1)

2445.20
(2844.3)

2716.92
(2137.9)

2713.09
(2757.8)

2262.78
(2626.1)

1356.82
(2577.7)

2834.35
(2043.8)

2414.72
(2954.8)

2675.21
(2954.8)

3536.80
(3624.5)

Stratification 20 Bins
BRQ No Zeros

1669.03
(1116.5)

2064.17
(2100.5)

1352.69
(2306.5)

2726.98
(1549.5)

2412.47
(1468.4)

2612.59
(1917.5)

1770.34
(1878.5)

2028.09
(1557.5)

1981.78
(1210.4)

2376.78
(1281.4)

1874.07
(1437.1)

2480.27
(1578.6)

Stratification 20 Bins
Logit No Zeros

1971.97
(1218.8)

2119.36
(2352.0)

1421.64
(1164.9)

2991.63
(2430.7)

2458.90
(2052.7)

3137.16
(2219.0)

1971.97
(1218.8)

2119.36
(2352.0)

1421.64
(1164.9)

2991.63
(2430.7)

2458.90
(2052.7)

3137.16
(2219.0)

Note: Standard deviation in parentheses
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Table 5: Number of Individuals Assigned to a Bin by Parametric and Semiparametric Estimates Using
PSID and Early Random Assignment Experimental Sample via Specification 2

Logit Bins ->
BRQ Bins 

0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total

[0-0.05%) 2178 58 17 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2266
[.05-0.1%) 42 42 23 21 19 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 153
[0.1-0.15%) 0 1 2 2 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 10
[0.15-0.2%) 0 0 0 5 6 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 20
[0.2-0.25%) 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 5
[0.25-0.3%) 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
[0.3-0.35%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.35-0.4%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
[0.4-0.45%) 0 1 2 0 2 1 4 0 4 5 2 2 6 0 0 0 0 0 0 0 27
[0.45-0.5%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.5-0.55%) 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2
[0.55-0.6%) 0 0 1 2 1 1 5 2 1 2 4 5 7 4 7 2 1 1 0 0 45
[0.6-0.65%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.65-0.7%) 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 2 0 1 0 0 6
[0.7-0.75%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.75-0.8%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.8-0.85%) 0 0 0 0 0 0 0 0 2 3 3 5 10 7 10 2 5 10 3 1 61
[0.85-0.9%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[0.9-0.95%) 0 0 0 0 0 0 0 0 0 0 0 1 2 5 5 3 2 5 12 32 62
[0.95-1.0%) 0 0 0 0 0 0 1 0 2 0 1 0 0 1 1 7 20 8 14 24 79
Total 2221 103 45 36 42 12 13 6 12 10 11 18 20 14 23 16 28 24 29 57 2740
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Appendix Table 1: Summary Statistics
Sample LaLonde

Treated
LaLonde
Controls

DW Treated DW
Controls

Early
Assignment
Treated

Early
Assignment
Control

CPS PSID

Sample Size 297 425 185 260 108 142 15992 2490
Age 24.626

(6.686)
24.447
(6.590)

25.816
(7.155)

25.054
(7.058)

25.370
(6.251)

26.014
(7.108)

33.225
(11.045)

34.851
(10.441)

Years of
Education

10.380
1.818)

10.188
(1.619)

10.346
(2.011)

10.088
(1.614)

10.491
(1.643)

10.275
(1.572)

12.028
(2.871)

12.117
(3.082)

Hispanic 0.094 0.113 0.059 0.108 0.074 0.113 0.072 0.032
Black 0.801 0.80 0.843 0.827 0.824 0.817 0.074 0.251
Married 0.168 0.158 0.189 0.154 0.204 0.190 0.712 0.866
Dropout 0.731 0.814 0.708 0.835 0.713 0.803 0.296 0.305
Zero Earnings
in 1974 0.441 .461 0.708 0.75 0.50 0.542 0.120 0.086
Zero Earnings
in 1975 0.374 0.419 0.60 0.685 0.324 0.472 0.109 0.100
Real Earnings
in 1974

3571.00
(5773.13)

3672.49
(6521.53)

2095.57
(4886.62)

2107.03
(5687.91)

3589.64
(5970.74)

3857.94
(7254.27)

14016.8
(9569.80)

19428.8
(13406.9)

Real Earnings
in 1975

3066.10
(4874.89)

3026.68
(5201.25)

1532.06
(3219.25)

1266.91
(3102.98)

2596.03
(3871.68)

2276.96
(3919.28)

13650.8
(9270.40)

19063.3
(13596.9)

Real Earnings
in 1978

5976.35
(6923.80)

5090.05
(5718.09)

6349.14
(7867.40)

4554.80
(5483.84)

7357.41
(9027.18)

4608.92
(6031.96)

14846.66
(9647.39)

21553.9
(15555.4)

Note: Standard Deviation in Parentheses
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Appendix Table 2: Treatment Effect Estimates with Parametric Propensity Scores using Stratification Matching
SPECIFICATION ONE SPECIFICATION TWO

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
Experiment
Impact

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49

20 Bins
Excluding 0-
0.05

-277.54
(603.86)

-401.81
(788.77)

1327.11
(860.30)

1631.55
(1157.9)

1386.91
(1108.3)

2242.87
(1265.9)

 -373.80
(556.89)

18.44
(706.37)

1361.09
(794.66)

1940.58
(911.70)

2437.87
(1063.0)

1380.82
(1303.5)

20 Bins no
exclusion

-1067.65
(596.06)

-611.86
(759.50)

14.76
(816.72)

1151.39
(1094.7)

211.18
(959.90)

1441.67
(1351.0)

 -1312.4
(544.38)

-301.82
(707.88)

171.88
(776.22)

1354.01
(947.75)

591.07
(1060.0)

465.81
(1237.7)

20 Bins
DW
exclusion

-819.79
(582.53)

-632.00
(800.09)

1096.57
(800.63)

1394.41
(1060.4)

1255.21
(1032.5)

1297.61
(1125.5)

-803.78
(489.33)

-268.06
(688.45)

902.33
(731.83)

1513.39
(920.17)

1634.18
(938.87)

694.29
(1245.2)

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications. DW exclusion drops all individuals in the treatment group with
estimated propensity scores above the maximum propensity score in the control group and drops all control individuals whose estimated
propensity score is less than the minimum propensity score of the treatment group.
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Appendix Table 3: Evaluation Bias Estimates with Parametric Propensity Scores using Stratification Matching
SPECIFICATION ONE SPECIFICATION TWO

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
Experiment
Impact

886.32 886.32 1794.34 1794.34 2748.49 2748.49 886.32 886.32 1794.34 1794.34 2748.49 2748.49

20 Bins -1318.41
(530.93)

-1011.45
(696.50)

62.14
(673.98)

726.59
(779.96)

-1216.63
(769.63)

-302.93
(911.30)

-1303.93
(427.43)

-685.21
(594.36)

-399.41
(547.29)

679.02
(760.47)

-1275.2
(634.42)

-1862.5
(1108.8)

10 Bins -1148.28
(539.09)

-1070.33
(783.31)

-124.51
(675.83)

84.97
(926.07)

-1135.18
(849.69)

-825.08
(952.01)

-1248.07
(437.63)

-985.08
(634.63)

-229.11
(566.49)

248.66
(1056.9)

-1129.4
(641.74)

-1156.1
(876.66)

Including Lowest Probability Bin
20 Bins -1749.99

(517.42)
-1269.00
(695.99)

-411.11
(644.94)

455.02
(770.67)

-1851.27
(737.83)

-765.03
(947.28)

 -1890.1
(399.59)

-1091.06
(600.09)

-912.84
(528.85)

270.58
(805.11)

-1939.3
(630.75)

-2286.0
(1097.8)

10 Bins -2004.45
(491.63)

-1593.87
(741.56)

-977.55
(643.09)

-505.34
(911.10)

-2282.38
(762.06)

-1471.57
(863.60)

 -2051.4
(398.61)

-1421.89
(650.42)

-1275.7
(511.59)

-375.59
(1057.2)

-2526.2
(627.09)

-2186.9
(934.91)

Note: Bootstrapped standard errors in parentheses. 1000 Bootstrap replications.
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 Table 4: Average Absolute Bias Error using Klein Spady (1993) Propensity Scores.
SPECIFICATION ONE SPECIFICATION TWOMatching Algoritm

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Nearest Neighbor 1
W/O Common Support

6352.60
(6193.4)

 5877.75
(5394.6)

5428.18
(5478.5)

 7102.12
(5732.3)

 6299.20
(5745.2)

 4992.30
(4360.3)

6982.26
(8108.0)

6982.26
(8108.0)

6073.86
(5848.0)

4996.93
(5405.9)

6646.79
(5585.2)

6165.67
(6501.4)

Nearest Neighbor 10
W/O Common Support

 5022.36
(3667.6)

 4915.66
(4005.2)

4395.05
(3769.7)

4372.99
(4070.6)

5034.94
(4037.6)

 4728.47
(5530.1)

6242.61
(6630.9)

6242.61
(6630.9)

5953.66
(5963.3)

4371.97
(4313.1)

4953.87
(4190.9)

5179.72
(4200.4)

Nearest Neighbor 1 W.
Common Support

6352.60
(6193.4)

 5877.75
(5394.6)

5428.18
(5478.5)

 7102.12
(5732.3)

 6299.20
(5745.2)

 4992.30
(4360.3)

6982.26
(8108.0)

6281.00
(6519.6)

5783.91
(5562.5)

5329.23
(5852.4)

6641.07
(5604.8)

6165.67
(6501.4)

Nearest Neighbor 10
W. Common Support

 5022.36
(3667.6)

 4915.66
(4005.2)

4395.05
(3769.7)

4372.99
(4070.6)

5034.94
(4037.6)

 4728.47
(5530.1)

5389.74
(3573.7)

5169.50
(4489.5)

4446.48
(3550.9)

4533.35
(4581.9)

4968.01
(4192.8)

5139.80
(4767.8)

Kernel (Bandwidth
0.04)

 5042.46
(3757.7)

 5053.83
(3821.2)

4647.82
(3784.4)

4372.99
(4070.6)

5592.54
(4275.5)

5858.21
(5163.0)

5288.00
(3749.6)

5178.34
(4240.0)

4791.99
(3773.9)

4835.59
(4899.4)

5366.73
(4400.9)

5659.19
(4835.2)

Kernel (Bandwidth
0.01)

4864.39
(3807.3)

5066.20
(3940.8)

4646.35
(4162.6)

4907.52
(4606.9)

4941.11
(4265.6)

 4926.83
(4817.3)

5165.07
(3568.3)

5313.46
(4579.4)

4505.29
(3787.2)

4418.51
(4599.3)

5010.83
(4338.8)

5139.80
(4767.8)

Local Linear
(Bandwidth 0.04)

 4643.84
(3361.2)

 4779.31
(3443.1)

4235.01
(3484.8)

4649.24
(4030.1)

4847.18
(3730.9)

4891.54
(3996.1)

4963.27
(3390.6)

5087.11
(4164.5)

4376.77
(3385.1)

4385.57
(4278.7)

4816.22
(3781.0)

4911.10
(4017.3)

Local Linear
(Bandwidth 0.01)

 4619.84
(3401.0)

 4852.26
(3615.3)

4294.89
(3468.0)

4772.71
(4037.1)

4768.45
(3804.2)

5026.13
(4125.3)

4950.94
(3414.4)

6220.03
(6567.4)

4400.88
(3298.2)

4443.02
(4215.7)

4700.37
(3845.8)

5012.75
(4074.9)

Caliper (0.01)  6339.56
(6261.6)

6689.82
(6748.7)

5446.49
(5212.1)

6330.32
(5532.0)

6277.75
(5884.8)

 5193.95
(5978.1)

7073.26
(6439.0)

6902.02
(8119.1)

6231.49
(5726.5)

5313.34
(5674.4)

6887.10
(5729.9)

6278.50
(6495.2)

Caliper (0.001)  7036.05
(6396.3)

 7554.11
(6420.4)

6094.01
(5941.0)

6304.42
(5244.3)

6740.51
(5551.1)

5599.46
(5952.7)

8043.27
(6573.9)

9112.63
(7070.8)

7641.16
(6630.4)

6489.76
(6698.5)

7614.11
(5101.5)

8719.40
(7685.5)

Caliper (0.0001)  8504.31
(7520.5)

8995.17
(6439.2)

 6926.92
(5921.7)

 8826.38
(6777.3)

6456.99
(5892.1)

7676.29
(7393.1)

9112.63
(7070.8)

10875.3
(12640.)

6495.55
(5913.0)

8338.97
(8341.5)

8000.81
(5487.2)

11143.0
(11077.)

Stratification 20 Bins
KS

 2520.56
(2569.6)

 2762.02
(2109.9)

 2289.02
(2310.8)

 1786.94
(2714.3)

 3269.07
(2592.6)

 3511.51
(5567.7)

2849.80
(2053.8)

2718.37
(2728.4)

2310.46
(2244.7)

 2078.51
(2811.4)

 3022.43
(3408.2)

3475.25
(3674.8)

Stratification 20 Bins
BRQ

2054.54
(2192.5)

2210.44
(2312.4)

1741.31
(1833.8)

2864.02
(1997.1)

2929.14
(2032.3)

2234.41
(2063.6)

2451.74
(2633.4)

2585.78
(1968.3)

2372.92
(1611.9)

2596.23
(2174.3)

2511.21
(2099.7)

3133.87
(3444.3)

Stratification 10 Bins
BRQ

1768.95
(2364.5)

2113.56
(2833.4)

2654.56
(2412.1)

2445.20
(2844.3)

2716.92
(2137.9)

2713.09
(2757.8)

2262.78
(2626.1)

1356.82
(2577.7)

2834.35
(2043.8)

2414.72
(2954.8)

2675.21
(2954.8)

3536.80
(3624.5)

Stratification 20 Bins
BRQ No Zeros

1669.03
(1116.5)

2064.17
(2100.5)

1352.69
(2306.5)

2726.98
(1549.5)

2412.47
(1468.4)

2612.59
(1917.5)

1770.34
(1878.5)

2028.09
(1557.5)

1981.78
(1210.4)

2376.78
(1281.4)

1874.07
(1437.1)

2480.27
(1578.6)

Stratification 20 Bins
KS No Zeros

 1743.21
(1541.6)

 2586.14
(1623.0)

 1910.55
(1575.8)

 1606.58
(2155.5)

 2344.50
(1665.9)

 2842.86
(4660.3)

2309.40
(1341.8)

2464.88
(2136.3)

1784.02
(1543.9)

 1761.06
(1685.3)

 2358.11
(3214.4)

 2941.83
(2420.8)

Note: Standard deviation in parentheses


