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Abstract

This is the online appendix for Lehrer and Xie (2016). Five sections are included, which
provide further details for (1) the data utilized, (2) econometric theory, (3) design of
the relative out of sample prediction efficiency experiment, (4) initial motivation, and
(5) additional empirical results.



A Further Details on the Data

In our analysis, we elected to concentrate only on movies whose budgets were between 20 to
100 million dollars. This sample selection criteria was suggested to us by members of IHS
film consulting unit and accounts for 41.4% of all releases in the time period studied. We
believe it is reasonable since these films receive standard amounts of social media marketing
and are destined for national release. There are surprisingly few films with budgets over
100 million dollars (15.4%) and we feel that a different set of candidate models is likely
needed for both these big-budget films as well as for many “art-house” films that have small
budgets. Thus, while adding more films is possible for our estimation approach, additional
computational demands are introduced by increasing the number of candidate models.1 Our
aim is to evaluate whether in situations with remarkably similar entertainment products, are
social media and model uncertainty empirically important.

A.1 Sentiment Description

To measure purchasing intentions from the universe of Twitter messages, sentiment specific
to a particular film is calculated using an algorithm developed by Janys Analytics for IHS.
Specifically, this algorithm which is based on Hannak et al. (2012) involves textual analysis
of movie titles and movie key words. In a message that mentions a specific film title or key
word, sentiment is calculated by examining the emotion words and icons that are captured
in the same Twitter message.2

In total, each of 75,065 unique emotion words and icons that appeared in at least 20
tweets between January 1st, 2009 to September 1st, 2009 are given a specific value that
is determined using emotional valence.3 To calculate the sentiment index for the film, a
weighted average of the sentiment of the scored words in all of the messages associated with
a specific film during a time period is then calculated. This overall sentiment score indicates
the propensity for which there is a positive emotion tweet related to that movie.

Since opinions regarding a film likely vary over time with the release of different marketing
devices to both build awareness and increase anticipation, IHS film consulting unit suggested
to calculate sentiment over different time periods. That is, suppose the movie release date
is T, then we separately calculate sentiment in ranges of weeks corresponding to T–21/–27,
T–14/–20, T–7/–13, T–4/–6, T–1/T–3. In the DVD analysis, we additionally incorporate
measures of sentiment in ranges corresponding to T+0, T+1/+7, T+8/+14, T+15/+21,

1We should note that our sample contains few sequels and seasonality appears to play no role unlike
prior work evaluating box office revenue such as Einav (2007). In Appendix E.2, we do present some results
that utilize this additional information (and continue to find statistical insignificance) but do not utilize this
information in the remainder of the main text to gain computational savings.

2Twitter messages are capped at 140 characters and often contain acronyms and Twitter specific syntax
such as hashtags presenting challenges to using traditional sentiment inference algorithms.

3Emotional valence is a term frequently used in psychology that refers to the intrinsic attractiveness
(positive valence) or aversiveness (negative valence) of an event, object, or situation.
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and T+22/+28.4 We also include measure corresponding to the volume of Twitter messages
for each specific film in these time ranges. For the films analyzed and considering open box
office, the volume of Twitter message is 1,100,439; and for DVD, this number is 3,433,413.
In general, the day of film release witnesses a significantly higher volume of Tweets than any
another day.

We next present the empirical probability distribution function of sentiment data for
each time interval using kernel-based method in Figures A1 and A2. Due to design of the
emotional valence algorithm, the mean of sentiment variables is around 75, but does exhibit
significant variation in each time interval. We should stress that there has been substan-
tial evaluation of the sentiment inference algorithm developed by Janys Analytics for IHS.
Hannak et al. (2012) compare this sentiment inference methodology score to one calculated
by users of Amazon Mechanical Turk and find that they are strongly positively correlated
with ρ = 0.6525. An additional advantage is that the sentiment inference algorithm is easy
to regularly update to readjust the frequency at which a specific work is associated with a
positive emotion in calculating the initial values that enter the sentiment calculator to adjust
to potential changes in the Twitter user population.

A final important issue to briefly discuss is that the demographics of Twitter users differs
markedly from the national population. Mislove et al. (2011) document that these users are
predominately male and located in urban areas, but point out these calculations are based
on self-reported profiles. Further, these authors note that the male bias is declining rapidly.
Despite the self-selection of these users, we believe that this sample of users is likely highly
correlated with the characteristics of moviegoers and DVD purchasers so is relevant to study.
After all, research in marketing indicates that everyday consumers often seek like-minded
amateurs’ opinions (for example, Chakravarty, Liu, and Mazumdar (2009) and Holbrook
(1999)).

B Further Motivation for Model Uncertainty with So-

cial Media Data in Empirical Economics

While theory may not directly guide our choice of model specification it does provide a
clear rationale for using least squares model averaging. Specifically, both accounting for
social media data and allowing for model uncertainty is consistent with a growing body of
work in behavioral economics.5 Whereas, the standard neoclassical economic model assumes
that people care only about maximizing their own payoffs, a large body of research has

4We use the sentiment data before the release date in equations that forecast the opening weekend box
office. After all, reverse causality issues would exist if we include sentiment data after the release date. These
latter measures are only considered in equations that forecast DVD and Blu-Ray sales.

5Research in behavioral economics focuses on identifying these forms of biases and exploring their im-
plications for standard economic models. That said, the examples that we discuss in the remainder of the
paragraph do not consider the network structure of Twitter. It is likely that there is what psychologists
term as belief polarization and research in computer science has shown that individuals give more weight to
messages from those that are considered strong ties relative to weak ties.
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Figure A1: Empirical PDF of Sentiment Variables for Open Box Office
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shown that social forces also play a large role in decision making.6 Further, an economic
theory literature has developed analyzing (near) costless communication in a sender-receiver
game framework. In an important paper, Crawford (2003) demonstrates if there is the
possibility of interacting with boundedly rational receiver in this setting, multiple equilibria
arise, including those in which the sender lies in pre-play communication of their intentions.7

Thus, there are many strategic rationales underlying the intentions’ one communicates to
their followers via messages on the social web.8

Indeed there has been a number of economists that have also begun to include social
media data in their analysis, Antenucci, Cafarella, Levenstein, Ré, and Shapiro (2014) and
Toole, Lin, Muehlegger, Shoag, González, and Lazer (2015) each illustrate the potential of
data from the social web to measure economic indicators of labor market activity.9 Outside
of economics, there also has been tremendous growth in academic circles in using data
extracted from social media (Facebook, Twitter, Google+, etc) to analyze the economy with
these tools. For example, Mishne and Glance (2006) proposed using Blogger sentiment to
predict movie sales. Bollen, Mao, and Zheng (2011) demonstrated that Twitter mood can

6For example, see Lee (2008), Hsu and Lin (2008), and Kleef, Dreu, and Manstead (2010) for details.
7In addition, recent experimental research (Andreoni and Bernheim (2009) and Embrey, Fréchette, and

Lehrer (2015)) has shown that individuals are more likely to deviate from social norms when they have a
means to hide their true intentions.

8Further, it is plausible that an individual recipient may interpret an identical message differently based
on who the poster is. While the identical message would receive the same individual score, it could, for
example, if made by a right wing individual be interpreted as being supportive, whereas it might be deemed
as being sarcastic if made by an individual on the other side of the political spectrum.

9Einav and Levin (2014) summarize the opportunities and challenges that confront economists wishing
to take advantage of large new data sets either obtained from the social web or administrative records.
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Figure A2: Empirical PDF of Sentiment Variables for DVD Unit Sales
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predict the stock market. In a recent paper, Karabulut (2013) showed that the stock market
activity can also be predicted by measures extracted from Facebook messages. Yet, to the
best of our knowledge, no prior study considered applying model averaging when forecasting
outcomes with explanatory variables extracted from the social web.
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C More Details on the Econometric Theory

C.1 Theorem 1

In this subsection, we lay out all the necessary details to derive Theorem 1 in the main text,
which demonstrates that if we group regressors into sets of four or larger, the PMA estimator
always yields smaller asymptotic risk than the unrestricted least-squares estimator.

We begin by continuing to assume that the DGP follows (3). The regressor X can be
partitioned into ordered groups as X = [X1, ...,Xm, ...,XM ], where Xm is n× km and the
total number of regressors is k = k1 + ... + kM . In this set-up, all models are nested in
sequence. Therefore, M groups of regressors generate M potential models. The mth model
includes the regressors X(m) = [X1, ...,Xm] and excludes the remaining regressors. Note
that the mth potential model has k(m) = k1 + ... + km regressors and the regressor X1 are
included in all models.

The unconstrained least-squares estimator of β in the full model is

β̂LS = (X>X)−1X>y (A1)

with residual û = y −Xβ̂LS. If we define a k × k(m) matrix

S(m) =

[
I(m)

0

]
where I(m) is an identity matrix with rank k(m), for the mth model, we have X(m) = XS(m).

Given the least squares estimator β̂
(m)

=
(
X(m)>X(m)

)−1

X(m)>y is k(m)×1, we can expand

it to k × 1 using the S(m) matrix:

β̃
(m)

= S(m)β̂
(m)

= S(m)
(
S(m)>X>XS(m)

)−1

S(m)>X>y.

The corresponding residual is û(m) = y −Xβ̃(m)
. Note that since model M contains all

regressors, we have β̂
(M)

= β̂LS and û(M) = û.

An averaging estimator of β is

β̂(w) =
M∑
m=1

w(m)β̃
(m)
.

The residual from the averaging estimator is

û(w) = y −Xβ̂(w) =
M∑
m=1

w(m)û(m).
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We can rewrite PMA in (6) as

PMAn(w) = û(w)>û(w) + 2
M∑
m=1

w(m)Tm(w), (A2)

where Tm(w) = σ̂(w)k(m) and

σ̂2(w) =
û(w)>û(w)

n−
∑M

m=1 w
(m)k(m)

Given the estimated weighting vector ŵ, we define the estimated averaged estimator as

β̂A =
M∑
m=1

ŵ(m)β̃
(m)
. (A3)

For convenience, we consider the cumulative weight version of PMA. Let w
(m)
∗ = w(1)+...+

w(m) and define the cumulative weight vectorw∗ =
[
w

(1)
∗ , ..., w

(M)
∗

]>
. Similarly, the estimated

cumulative weight vector is ŵ∗ =
[
ŵ

(1)
∗ , ..., ŵ

(M)
∗

]>
. Note that w ∈ HM is equivalent to

w∗ ∈ H∗
M , where H∗

M =
{
w∗ : 0 ≤ w

(1)
∗ ≤ · · · ≤ w

(M)
∗ ≤ 1

}
. Using the cumulative weight

vector, the averaged estimator can be written as

β̂(w) = β̂LS −
M−1∑
m=1

w(m)
∗

(
β̃

(m+1) − β̃(m)
)

and the estimated averaged estimator is simply β̂A = β̂(ŵ).

Define tm+1(w) ≡ Tm+1(w)− Tm(w) and Lm ≡
(
û(m)

)>
û(m), we have

Lemma 1 The PMA defined in (A2) can be rewritten as

PMAn(w) = PMA∗n(w∗) + LM ,

where

PMA∗n(w∗) =
M−1∑
m=1

((
w(m)
∗
)2

(Lm − Lm+1)− 2w(m)
∗ tm+1(w)

)
+ 2TM(w). (A4)

Hence,
ŵ∗ = arg min

w∗∈H∗
M

PMA∗n(w∗). (A5)

Lemma 1 states that the original PMA defined in (A2) can be transformed into PMA∗n(w∗)
that incorporates the cumulative weight vector w∗. Also, w∗ can be estimated through con-
vex optimization of PMA∗n(w∗).
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Note that although the cumulative weight criterion PMA∗n includes both cumulative
weights w∗ and model weights w in (A4), w can be linearly transformed into w∗ easily (and
vice versa). We keep both weighting vectors in (A4) for convenience in proofs. Our cumu-
lative weight criterion PMA∗n does not belong to the class of least squares model averaging
criteria defined in Lemma 1 of Hansen (2014). Therefore, results from Hansen (2014) can
not be applied to our PMA estimator directly.

We impose the following assumptions.

Assumption 1 Given a 1× k row vector xi that is a row in X, we let Q = E(x>i xi) > 0.

Assumption 2 There exist some fixed integer N <∞, such that

E[|ui|4(N+1)|xi] ≤ κ <∞.

Assumption 3 As n→∞, n1/2β(m) → δ(m) for m = 2, · · · ,M .

Assumption 4 As n→∞, kM/n→ 0.

Assumptions 1 and 2 are bounding conditions on xi and ui. Assumption 3 is a local
asymptotic framework and it allows the coefficient β(m) to be in a local n−1/2 neighbourhood
around 0. Note that β(1) is not constrained by this framework since it is included in all
models. Assumption 4 guarantees that kM is always smaller than n.

Lemma 2 Let Assumptions 1–4 hold, as n→∞, we have Tm(w)
p→ T 0

m for m = 1, · · · ,M ,
where T 0

m = σ2k(m).

Lemma 2 states that Tm(w) converges in probability to a term T 0
m which is independent

of w asymptotically. Therefore, combining Lemma 1 with Lemma 2, we can conclude that
the term 2TM(w) in PMA∗n(w∗) can be ignored when estimating ŵ∗ asymptotically.

Two more assumptions are needed

Assumption 5 {yi,xi} is independent and identically distributed with finite fourth mo-
ments.

Assumption 6 We let km ≥ 4 for all m > 1, which means the regressors Xm are grouped
into sets of four or larger, except X1.

Following Hansen (2014), we define the asymptotic risk as

R(β̂,β) = lim
ζ→∞

lim inf
n→∞

Emin
{
n(β̂ − β)>Q(β̂ − β), ζ

}
,

where β̂ can be any estimated β. With the above Assumptions and Lemmas, we represent
the following theorem that also appears in the main text.
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Theorem 1 Let Assumptions 1 – 6 hold. We have

R(β̂A,β) < R(β̂LS,β), (A6)

where β̂LS and β̂A are defined in (A1) and (A3) respectively.

Theorem 1 can be seen as a supplement of Theorem 3 in Hansen (2014) and as such we
only consider the homoskedastic case. We leave the heteroskedastic case for future research.

C.2 Proof

Proof of Lemma 1 Note that Lj ≥ Lj+1 and
(
û(j)

)>
û(m) = Lmax(j,m) by the properties of

the least square residuals of this nested model situation. The PMA criterion is then

PMAn(w) =
M∑
m=1

M∑
m=1

w(j)w(m)Lmax(j,m) + 2
M∑
m=1

w(m)Tm(w). (A7)

The first term in (A7) can be rewritten as

(w(1))2L1 +
(
(w(2))2 + 2w(2)w(1)

)
L2 + · · ·+

(
(w(M))2 + 2(w(M))(w(1) + · · ·+ w(M−1)

)
LM

= (w(1))2L1 +
(
(w(1) + w(2))2 − (w(1))2

)
L2 + · · ·

+
(
(w(1) + · · ·+ w(M))2 − (w(1) + · · ·+ w(M−1))2

)
LM

=
M−1∑
m=1

(
w(m)
∗
)2

(Lm − Lm+1) + LM . (A8)

The second term in (A7) is

2
M∑
m=1

w(m)Tm(w) = 2w(1)(T1(w)− T2(w)) + 2(w(1) + w(2))(T2(w)− T3(w)) + · · ·

+2(w(1) + · · ·+ w(M−1))(TM−1(w)− TM(w)) + w(M)
∗ TM(w)

= −2
M−1∑
m=1

w(m)
∗ (Tm+1(w)− Tm(w)) + 2TM(w). (A9)

Plug (A8) and (A9) in (A7), we get

PMA∗n(w∗) =
M−1∑
m=1

((
w(m)
∗
)2

(Lm − Lm+1)− 2w(m)
∗ tm+1(w)

)
+ 2TM(w).

Moreover, since LM is unrelated with w, we have ŵ∗ = arg min
w∗∈H∗

M

PMA∗n(w∗).
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Proof of Lemma 2 A sufficient and necessary condition to prove Lemma 2 is

σ̂2(w) =
û(w)>û(w)

n− k(w)

p→ σ2, (A10)

which implies that σ̂2(w) is a consistent estimator of σ2.

Using equations (A7) and (A8) in the proof of Lemma 1, we obtain

û(w)>û(w) =
M−1∑
m=1

(
w(m)
∗
)2

(Lm − Lm+1) + LM ,

Given w∗m ≤ 1 for any m = 1, · · · ,M and Assumption 4, a sufficient condition for (A10) to
hold is

LM
n

p→ σ2 and
Lm − Lm+1

n

p→ 0

for m = 1, · · · ,M − 1, which can be achieved if

Lm
n

p→ σ2 for m = 1, · · · ,M. (A11)

For each m, we have

û(m) = y −X(m)β̂
(m)

=
(
I − P (m)

)
u+

(
I − P (m)

)
X

(m)
− β

(m)
−

where P (m) stands for the projection matrix of X(m), X
(m)
− = [Xm+1, · · · ,XM ] represents

the factors not included in X(m), and β
(m)
− =

[
β>m+1, · · · ,β>M

]>
is the associated coefficient

vector of X
(m)
− .

Then, we have

Lm
n

=
1

n
u>
(
I −P (m)

)
u+

1

n

(
X

(m)
− β

(m)
−
)>(
I −P (m)

)
X

(m)
− β

(m)
− +

2

n
u>
(
I −P (m)

)
X

(m)
− β

(m)
−

(A12)
By a straightforward application of Theorem 2 in Hansen (2007), we have

1

n
u>
(
I − P (m)

)
u

p→ σ2.

Also, the third term of (A12) is op(1) by the condition E(u|X) = 0. By Q = E[x>i xi] > 0,
we have

1

n

(
X

(m)
−
)>(
I − P (m)

)
X

(m)
−

p→
(
Q

(m)
−
)1/2(

I − P (m)
)(
Q

(m)
−
)1/2

which is finite by Assumption 1 and Q
(m)
− = 1

n
E
((
X

(m)
−
)>
X

(m)
−

)
. By Assumption 2, we

have β
(m)
− = O(n1/2). Therefore, the second term of (A12)

1

n

(
X

(m)
− β

(m)
−
)>(
I − P (m)

)
X

(m)
− β

(m)
− → 0
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Therefore, condition (A11) is achieved.

Proof of Theorem 1 Theorem 1, Theorem 2, and Theorem 3 of Hansen (2014) established
result (A6) for a broad class of linear estimators. Many parts of Hansen’s (2014) proof can
be applied to our case except for a key procedure. In the proof of Theorem 1, Hansen (2014)
showed that

ŵ∗
d→ w∗(Z + δ),

where
√
n(β̂LS −β)

d→ N(0,V ) ≡ Z,
√
nβ → δ. And w∗(Z + δ) = arg min

w∗∈H∗
M

C∗(w∗,Z + δ),

where

C∗(w∗,Z + δ) =
M−1∑
m=1

(
w∗2m (Z + δ)>Q

(
P

(m+1)
Q − P (m)

Q

)
Q(Z + δ)− 2w∗mt

0
m+1

)
with t0m+1 = T 0

m+1 − T 0
m, T 0

m = σ2k(m), and P
(m)
Q ≡ S(m)(S(m)>QS(m))−1S(m)>.

For PMA case, it is straightforward to demonstrate that

√
nβ̃

(m)
= S(m)

(
S(m)>

(
1

n
X>X

)
S(m)

)−1

S(m)>
(

1

n
X>X

)√
nβ̂LS

d→ S(m)(S(m)>QS(m))−1S(m)>Q(Z + δ)

= P
(m)
Q Q(Z + δ)

Therefore, √
n
(
β̃

(m+1) − β̃(m)) d→
(
P

(m+1)
Q − P (m)

Q

)
Q(Z + δ). (A13)

Similarly, we have

Lm − Lm+1 =
(
û(m)

)>
û(m) −

(
û(m+1)

)>
û(m+1)

=
(
û(m) − û(m+1)

)> (
û(m) − û(m+1)

)
=

(
β̂

(m+1)
− β̂

(m)
)>
X>X

(
β̂

(m+1)
− β̂

(m)
)

=
√
n
(
β̂

(m+1)
− β̂

(m)
)>( 1

n
X>X

)√
n
(
β̂

(m+1)
− β̂

(m)
)

(A14)

Substitute (A13) into (A14), we have

Lm − Lm+1
d→ (Z + δ)>Q

(
P

(m+1)
Q − P (m)

Q

)
Q
(
P

(m+1)
Q − P (m)

Q

)
Q(Z + δ)

= (Z + δ)>Q
(
P

(m+1)
Q − P (m)

Q

)
Q(Z + δ). (A15)

The equality in (A15) is an application of Lemma 3 of Hansen (2014). Therefore, by (A15),
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our Lemma 2, and Assumptions 1 and 5, we find that

PMA∗n(w∗) =
M−1∑
m=1

((
w(m)
∗
)2

(Lm − Lm+1)− 2w(m)
∗ tm+1(w)

)
+ 2TM(w)

d→ C∗(w∗,Z + δ) + 2TM .

Since (A5) is a convex minimization problem, and 2TM is unrelated with w, we can apply
the argument of Kim and Pollard (1990) and deduce that

ŵ∗
d→ w∗(Z + δ)

for our PMA estimator. The rest of proofs follows Hansen (2014).

D Further Details on the Relative Out-of-sample Pre-

diction Efficiency Experiment

D.1 Grouping Methods

In the main text, we supplement Theorem 3 in Hansen (2014),10 allowing this finding to
be applied to a broader set of least squares model averaging estimators including the PMA
estimator. Since both our Theorem 1 and Theorem 3 in Hansen (2014) require regressors to
be grouped into sets of four or larger, we group regressors based on either economic intuition
(g1) or statistical logic (g2) as outlined below.

Economic Intuition: We follow our personal economic intuition and placed variables
that capture similar characteristics into a single group. Note that we have one group of
regressors, X1, that must be included in all models and the number of regressors of X1 can
be any number. For open box office, we have

X1 : Key variables, Constant, Animation, Family, Weeks, Screens, VOL: T-1/-3

X2 : Volume, T-21/-27, T-14/-20, T-7/-13, T-4/-6

X3 : Sentiment, T-21/-27, T-14/-20, T-7/-13, T-4/-6, T-1/-3

X4 : Rating, PG, PG13, R, Budget

X5 : Male Genre, Action, Adventure, Crime, Fantasy, Sci-Fi, Thriller

X6 : Female Genre, Comedy, Drama, Mystery, Romance

For movie unit sales, we have

X1 : Key variables, Constant, Family, Fantasy, Romance, Thriller, Weeks,

Screens, SEN: T+22/+28

10See Appendix C for details and the formal proof.
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X2 : Sentiment, T+0, T+1/+7, T+8/+14, T+15/+21

X3 : Sentiment, T-21/-27, T-14/-20, T-7/-13, T-4/-6, T-1/-3

X4 : Volume, T+0, T+1/+7, T+8/+14, T+15/+21, T+22/+28

X5 : Volume, T-21/-27, T-14/-20, T-7/-13, T-4/-6, T-1/-3

X6 : Rating, PG, PG13, R, Budget

X7 : Male Genre, Action, Adventure, Crime, Sci-Fi

X8 : Female Genre, Animation, Comedy, Drama, Mystery

Statistical Logic: We first estimate the general unrestricted model (See Appendix E.4)
that includes all variables by OLS. Then, we rank the variables according to their p-values
from smallest to largest. For open box office (29 variables), we put the top 5 most significant
variables in M0 and group the remaining 24 variables into 6 groups of regressors of 4 in
sequence. Similar for the movie unit sales (39 variables), we fix 7 most significant variables
in M0 and equally distribute the remaining 32 variables into 8 groups in sequence.

D.2 More Details on Post–OLS LASSO Estimator

Consider the linear regression model:

yi = x>0iβ0 +

p∑
j=1

xjiβj + ui

for i = 1, ..., n, where x0i is k0 × 1 and xji is scalar for j ≥ 1. Let

β =
[
β>0 , β1, ..., βp

]>
xi =

[
x>0 , x1i, ..., xpi

]>
and define the matrices X and y by stacking observations. The OLS estimate of β is β̂ =
(X>X)−1X>y. Consider a constrained least-squares estimate β̃ subject to the constraint
β1 = β2 = ... = 0. The LASSO estimator shrinks β̂ towards β̃ by solving

β̂
L

= arg min
β

1

2n

n∑
i=1

(yi − x>i β)2 + λ

p∑
j=1

|βj|, (A16)

where λ is the tuning parameter that controls the penalty term. In practice, researchers
either assign λ to take on a specific value or use k-fold cross-validation to determine the
optimal λ. A common choice is to pick λ to minimize 5-fold cross-validation. In general, the
benefits from applying the LASSO in place of OLS exist in settings where either the number
of regressors exceeds the number of observations since it involves shrinkage, or in settings
where the number of parameters is not small relative to the sample size and some form of
regularization is necessary.

The drawback of k-fold cross-validation is its lack of computational efficiency. For exam-
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ple, using five-fold cross-validation, the LASSO computation procedure is time consuming
since it needs to be carried out over 200 times. The inefficiency becomes especially significant
when either the sample size is big and the number of variables is large. Thus, we follow Bel-
loni and Chernozhukov (2013) and ex-ante pick the number of explanatory variables whose
coefficients will not be shrunk to zero.11

D.3 More Details on the Estimation Strategies

In Table 2 of the main text, we explored the forecast accuracy of the 11 estimation strategies.
Details on the PMA estimator can be found in the main text. We have derived the group
MMA and the group PMA strategies in Section C. Also, Section D.2 discussed the LASSO
and post-LASSO strategies. The PMA post-LASSO strategy is simply the PMA model
averaging process on the variables selected by the LASSO. We now provide further details
the on the remaining strategies.

The general unrestricted model (GUM) strategy can be viewed as tossing everything in
including the kitchen sink. By design it will have a high R-squared but the inclusion of
irrelevant variables will cause losses in efficiency. The model without tweet variables (MTV)
strategy in Table 2 is simply the GUM without any social media variables.

The general-to-specific (GETS) strategy modifies the general unrestricted model by re-
moving irrelevant variables according to pre-determined criteria. We first estimate the GUM.
Then, regressors with the absolute value of the t-statistics smaller than cα = 2 are eliminated.
If multiple t-statistics are smaller than cα, we eliminate the smallest one. The remaining
regressors are retained and form a new model for the next-round test until no regressors can
be eliminated. This method is also called the step-down procedure.

For the Akaike information criterion (AIC) strategy, we consider restricted variants where
the AIC for a model m is defined as

AIC(m) = 2k(m) − 2 log L(m),

where log L(m) is the estimated log-likelihood and k(m) is the total number of regressors in
model m. The model that achieves the lowest value among all of the estimated AIC(m) is
selected by AIC.

The Mallows’ model averaging (MMA) strategy is a model averaging process. The MMA
criterion can be written as

MMAn(w) =
(
y − µ(w)

)>(
y − µ(w)

)
+ 2σ2k(w).

The empirical weights ŵ can be selected by minimizing the above criterion subject to w ∈
HM . Note that the penalty term includes an unknown σ2 that must be replaced by a sample
estimate (usually provided by the largest model).

11Note that in subsection E.1.2, we conduce a robust exercise that replicates the exercise presented in
Table 2 of the main text which compares OLS post LASSO to model averaging post LASSO to PMA where
variables are selected by GETS allowing for the LASSO to select between 5 and 15 explanatory variables.
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The jackknife model averaging (JMA) strategy is also known as leave-one-out cross-
validation model averaging. As its name indicates, JMA requires the use of the jackknife
residuals for the average estimator. The jackknife residual vector for model m can be con-
veniently written as û

(m)
J = D(m)û(m), where û(m) is the least squares residual vector and

D(m) is the n× n diagonal matrix with the ith diagonal element equal to (1− h(m)
i )−1. The

term h
(m)
i is the ith diagonal element of the projection matrix P (m). Define an n×M matrix

that collects all the jackknife residuals, in which ÛJ =
[
û

(1)
J , ..., û

(M)
J

]
. The least squares

cross-validation criterion for JMA is simply

CVn(w) =
1

n
w>Û

>
J ÛJw with ŵ = argmin

w∈ HM

CVn(w).

E Additional Empirical Results

In this section, results from additional analyses that investigate the robustness of our results
are presented.

E.1 Additional Evidence on the Importance of Social Media Data

We first present a subset of results from a reanalysis of the data where we only use one set
of social media measures or their interactions. The first part of this analysis demonstrates
that the improved performance of model averaging estimators also appears when we use
a subset of the social media data utilized in the main text. Second, this analysis also
provides us with intuition about what the set of sentiment measures and volume measures
are respectively capturing since we complement the forecasting exercise in the main text
with simple regressions that explore the amount of variation these respective sets explain.

E.1.1 OLS Results With One Set of Social Media Measures

OLS results corresponding to the GUM model for each outcome where we only control for a
single measure of social media are presented in Tables A1 and A2. Notice that in comparison
to Table A11 where we observe that the R2s of the estimating equations for open box and
movie unit are 0.8157 and 0.8129 when both social media measures are included. Table A1
shows that adding only sentiment appears to lead to R2s to 0.4269 and 0.5614 respectively,
whereas the inclusion of volume of tweet measures leads to a larger increase in explanatory
power as demonstrated in Table A2.

E.1.2 Prediction Comparison Using One Set of Measures

Table A3 simply carries out the simulation experiments to evaluate which approach has the
greatest forecast accuracy where we only include a single type of social media data. As
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Table A1: Models with Sentiment Only

Variable Open Box Movie Unit
Coefficient Std.Dev Coefficient Std.Dev

Genre
Action -11.3892* 4.4862 -0.7671* 0.2107
Adventure 11.7951* 4.8441 0.4645 0.2585
Animation -20.3252* 7.6094 -0.8398* 0.3702
Comedy -0.5663 5.2920 -0.2894 0.2594
Crime 6.6253 4.2120 0.3027 0.2045
Drama -7.2675 4.9288 -0.3723 0.2418
Family 12.4625 8.2733 0.5847 0.4022
Fantasy 9.3918 6.8777 1.0851* 0.3631
Mystery 1.1286 5.8030 -0.0703 0.2993
Romance 1.5579 5.1131 0.0987 0.2804
Sci-Fi 9.9416 5.9688 0.3667 0.2796
Thriller 7.1049 4.9221 0.1334 0.2459
Rating
PG 10.3234 16.2355 -0.2766 2.5710
PG13 19.9404 17.7779 0.3711 2.6666
R 19.7562 17.8686 0.0805 2.6809
Core Parameters
Budget 0.1477 0.0878 0.0091* 0.0041
Weeks 1.3065* 0.3481 0.0827* 0.0169
Screens 0.0150* 0.0035 0.0005* 0.0002
Sentiment
T-21/-27 -0.6193 1.0721 0.0239 0.0440
T-14/-20 0.1015 1.6598 -0.0565 0.0727
T-7/-13 0.1685 2.6746 0.3593 0.1976
T-4/-6 -1.5167 3.5326 0.1466 0.1735
T-1/-3 3.2659 3.6736 -0.1102 0.2076
T+0 -0.0112 0.2075
T+1/+7 0.1275 0.2562
T+8/+14 -0.0554 0.2687
T+15/+21 -0.0058 0.3052
T+22/+28 -0.3451 0.2051
R-square 0.4269 0.5614

* indicates the associated variable is significant at 5% level.
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Table A2: Models with Volume Only

Variable Open Box Movie Unit
Coefficient Std.Dev Coefficient Std.Dev

Genre
Action -0.8607 2.7540 -0.2331 0.1611
Adventure 6.8814* 2.9983 0.2922 0.1796
Animation -10.5877* 4.5519 -0.4814 0.2659
Comedy 2.9433 3.0978 -0.0822 0.1769
Crime 3.0686 2.4889 0.0873 0.1477
Drama -1.2196 2.8865 -0.0910 0.1635
Family 14.7771* 4.8933 0.7530* 0.2860
Fantasy 9.0517* 3.9869 1.0904* 0.2494
Mystery 3.4510 3.5182 -0.0222 0.2034
Romance 0.2018 2.9524 -0.1302 0.1897
Sci-Fi -1.3104 3.4539 -0.0653 0.1922
Thriller 1.7918 2.8538 0.0270 0.1639
Rating
PG 9.2063 9.4049 -0.4999 0.5336
PG13 8.9477 10.3256 -0.4076 0.5575
R 12.7364 10.3358 -0.4274 0.5524
Core Parameters
Budget 0.1156* 0.0500 0.0048 0.0030
Weeks 0.5495* 0.2150 0.0425* 0.0128
Screens 0.0086* 0.0021 0.0003* 0.0001
Volume
T-21/-27 -3.2987 21.2999 -1.6258 1.2530
T-14/-20 35.2492 23.5507 1.7605 1.4981
T-7/-13 -31.4952 32.3289 -3.5830 1.8292
T-4/-6 -19.9225 22.7535 0.4932 1.2895
T-1/-3 24.9256* 3.7846 0.8347 0.9864
T+0 -0.0557 0.2283
T+1/+7 0.0256 0.3320
T+8/+14 1.4796 1.0225
T+15/+21 0.2424 0.9215
T+22/+28 0.2527 0.5499
R-square 0.8075 0.7867

* indicates the associated variable is significant at 5% level.
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the results highlight, for both open box office and movie unit sales when we evaluate accu-
racy using the MSFE criteria, PMA has dominant performance in most of the experiments
considered. The result for other thresholds are also robust.

Table A3: Results for Relative Prediction Efficiency by MSFE
Opening Weekend Box (Sentiment Only)

nE GUM MTV GETS AIC JMA MMA PMA
10 1.3263 1.1161 1.2606 1.1390 1.0244 1.0090 1.0000
20 1.5184 1.2860 1.3838 1.1415 1.0133 1.0076 1.0000
30 1.5414 1.2153 1.3187 1.1405 1.0125 1.0132 1.0000
40 1.6424 1.2566 1.4099 1.1386 1.0237 1.0131 1.0000

Retail Video Unit Sales (Volume Only)
nE GUM MTV GETS AIC JMA MMA PMA
10 1.3467 1.8812 1.6625 1.1505 1.0097 1.0014 1.0000
20 1.8179 1.7155 1.6260 1.1541 1.0084 1.0008 1.0000
30 2.0025 1.6407 2.6568 1.1540 1.0163 0.9949 1.0000
40 2.5355 1.4942 4.6391 1.1652 1.0209 0.9889 1.0000

Note: Bold numbers with the best performance in that simulation experiment
denoted by the row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific
estimation approach denoted in the column relative to results using the PMA
method presented in the last column.

Throughout our analysis we find that incorporating volume and sentiment measures
collected from social media improve forecast accuracy and explain a large fraction of the
variation in the two Hollywood revenue outcomes. We do not observe additional gains from
including two by two interactions between contemporaneous social media measures, which
may in part be due to their high degree of collinearity.12 We also examine the performance
using only a single set of social media measures relative to the two utilized above. For
open box office and movie unit sales, comparisons of the relative forecasting performance
between models with only one set of social media measures (either sentiment or volume) and
models with both sets is presented in Tables A4. Irrespective of the size of the evaluation
set and outcome, we observe for each diagnostic used to measure forecast accuracy that (i)
specification using both sets of social media variables have improved performance relative to
including only one, and (ii) performance with only sentiment variables are substantially more
accurate than using only volume measures. This exercise confirms both measures are needed
since they capture different dimensions of product awareness and purchasing intentions.

Our analyses suggests that even with one set of social media data including the interaction
between the two sets, model averaging dominates other methods. This reinforces that both
opinions and the degree to which they spread are important explanatory variables for film
studio revenue measures and is suggestive that film companies need to both build buzz
and ensure that it is positive. However, this analyses also demonstrates that while the
sentiment variables play a larger role in increasing forecast accuracy, the inclusion of the
volume variables does explain substantially more variation in both outcome variables. This

12In general, these correlations are above 0.9 and since they do not offer independent explanatory variation
once we control for the main effects, it should not be a surprise that the interactions add little.
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Table A4: Comparing Relative Predictive Efficiency with Different Social Media Measures
Open Box Office Movie Unit Sales

nE Sentiment Volume Both nE Sentiment Volume Both
Mean Squared Forecast Error (MSFE)

10 1.0940 2.1232 1.0000 10 1.0978 2.0504 1.0000
20 1.0955 2.0763 1.0000 15 1.2387 2.0013 1.0000
30 1.1060 2.1391 1.0000 20 1.3353 1.9911 1.0000
40 1.1191 2.3644 1.0000 25 1.2781 1.8675 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0536 1.4652 1.0000 10 1.0907 1.4644 1.0000
20 1.0754 1.4519 1.0000 15 1.1007 1.4543 1.0000
30 1.0897 1.4874 1.0000 20 1.1260 1.4328 1.0000
40 1.0941 1.4427 1.0000 25 1.1538 1.4006 1.0000

Note: Bold numbers with the best performance in that simulation experiment denoted
by the row of the table. The remaining entries provide the ratio of the degree of the
respective forecast error metric of the estimator using the social media measure denoted
in the column relative to results using both social media measures.

difference is not surprising since an individual themselves is not exposed to the full volume
of messages on Twitter, just the sentiment within a subset. Thus, sentiment is more likely
to influence individual decisions, whereas volume can better predict aggregate outcomes.13

Our evidence also appears consistent with a growing behavioral and experimental eco-
nomics literature that examines how opinions of others influence decision-making. For ex-
ample, while there is mixed evidence on whether perceived intentions influence subsequent
economic choices; much of the recent work including Bernheim, Bjorkegren, Naecker, and
Rangel (2015) suggests that external information can influence decisions. Thus, it is not
surprising that social media can play a role in movie purchasing decisions. Further, the
heterogeneity in the effects of social media measures on the outcomes considered is also
consistent with much evidence of there being substantial heterogeneity in individual deci-
sion making across settings where different individuals face identical laboratory conditions
in experimental economics. As a whole, these results can be interpreted as providing sup-
port for social media marketing to influence people’s intentions and subsequent purchasing
decisions related to movies and is consistent with recent work in behavioral economics in-
cluding Camerer, Loewenstein, and Rabin (2004), Bertrand, Karlan, Mullainathan, Shafir,
and Zinman (2010) and Saez (2009) among others; that suggests that external influences can
change intentions when making a suite of economic decisions.

The results of this exercise for box office opening are presented in Table A5. Just as in
Table 2, we continue to find that PMA based on GETS has dominant performance over all
of the other strategies. By discarding variables post LASSO, the total number of potential
models in the second step are greatly reduced by the power of 2. However, these results
continue to suggest that certain critically important potential models are dropped, which in
turn induces higher MSFEs. The results of Table A5 also continue to reinforce that model

13In a highly controversial study, Kramer, Guillory, and Hancock (2014) experimentally manipulated the
emotional sentiment in a large group of randomly selected Facebook users’ news stream. They provide evi-
dence of emotional contagion which given the well-documented link between mood and subsequent purchasing
decisions, is evidence suggestive of the pathway between our sentiment measures and outcomes considered.
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averaging post LASSO yields significantly smaller MSFE than OLS post LASSO irrespective
of the number of variables selected. Finally, we do not consider this expansion of an exercise
for retail movie unit sales, since Table 4 clearly demonstrated the benefits of using the LASSO
in the first step to undertake variable selection.

Table A5: Further Comparison of the Relative Prediction Efficiency by
MSFE for Open Box Office

OLS with Variables Selected by LASSO
nE 14 13 11 9 8 7 6 5 PMA
10 1.0990 1.1086 1.1213 1.0855 1.0137 1.0000 1.0651 1.4958 1.0000
20 1.1263 1.1196 1.1387 1.0574 1.1089 1.0848 1.1358 1.6853 1.0000
30 1.0786 1.0847 1.0911 1.0712 1.0637 1.0607 1.0994 1.4619 1.0000
40 1.0519 1.0867 1.0621 1.0300 1.0297 1.0781 1.0620 1.3474 1.0000

PMA with Variables Selected by LASSO
nE 14 13 11 9 8 7 6 5 PMA
10 1.0790 1.0866 1.0881 1.0854 1.0084 1.0000 1.0577 1.3685 1.0000
20 1.0919 1.0812 1.0929 1.0516 1.0891 1.0841 1.1221 1.6669 1.0000
30 1.0650 1.0665 1.0687 1.0602 1.0566 1.0587 1.0802 1.4546 1.0000
40 1.0044 1.0084 1.0043 1.0232 1.0267 1.0752 1.0502 1.3359 1.0000

Note: PMA in the last column stands for PMA method where variables are selected by GETS. Bold
numbers with the best performance in that simulation experiment denoted by the row of the table.
The remaining entries provide the ratio of the degree of the respective forecast error metric of the
estimator using specific estimation approach denoted in the column relative to results using the PMA
method presented in the last column.

In summary, this set of analysis demonstrates that while the sentiment variables play a
larger role in increasing forecast accuracy, the inclusion of the volume variables does explain
substantially more variation in both outcome variables. This difference is not surprising
since an individual themselves is not exposed to the full volume of messages on Twitter,
just the sentiment within a subset. Thus, sentiment is more likely to influence individual
decisions, whereas volume can better predict aggregate outcomes.14

E.2 Checking Robustness to Including Seasonal and Sequel Effects

Einav (2007) discovered strong seasonality in the U.S. movie industry which appears driven
by blockbuster films that are both often released during holiday weekends and have large
budgets. Since the movies in our sample are screened according to their budgets: 20 to
100 million, we did not expect seasonality to play as an important role in our analyses.
However, since this is an empirical question, we subsequently investigated the robustness of
our results to this variable as well as one that measures whether a film is a sequel/prequel
in this Appendix. As detailed below, our empirical results did confirm our expectation and
neither seasonality or sequel/prequel play a significant role and as such were omitted from
the main analysis presented in the text.

14In a highly controversial study, Kramer, Guillory, and Hancock (2014) experimentally manipulated the
emotional sentiment in a large group of randomly selected Facebook users’ news stream. They provide evi-
dence of emotional contagion which given the well-documented link between mood and subsequent purchasing
decisions, is evidence suggestive of the pathway between our sentiment measures and outcomes considered.
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To conduct this robustness exercise, we first cross referenced each movie release date
with U.S. holidays from 2010 to 2013. We construct a new dummy variable “Seasonality”,
which equals 1 if the movie is released on holiday, 0 otherwise. We add the new variable to
OLS regression in Appendix E.4. Empirical results are presented in Table A6. The variable
“Seasonality” is highly insignificant for both open box office and movie unit sales. Also,
adding Seasonality does not improve the overall R2 for both cases.15

As mentioned, we also examined the effect of sequels. Similar to Seasonality, we construct
a dummy variable Sequel, which equals to 1 if the movie is a sequel/prequel of a previous
film. Empirical results are presented in Table A6. Like Seasonality, we find that Sequel is
highly insignificant for both open box office and movie unit sales.

Table A6: Seasonality Examination
Variable Open Box Movie Unit

Coefficient Std.Dev Coefficient Std.Dev
Seasonality 1.3532 1.9747 0.0650 0.1198
R-square 0.8142 0.8096

Sequel 0.5412 3.8421 0.0760 0.2129
R-square 0.8128 0.8088

E.3 Exploring Fit and the Underlying Top 5 Models

While the results in the main text show the practical advantages of using model averaging
for forecasts within this industry, there are clear computational costs relative to conventional
approaches. Put simply, implementing the model averaging method can be time consuming
when the total number of potential models is very large. This is mainly due to the opti-
mization routine irrespective of the software employed. To illustrate, consider the box office
opening weekend example. In our data, there are a total number of 29 parameters in the
general unrestricted model. Even if we fix 5 parameters in every model, it still implies a
total of 224 = 16, 777, 216 potential models, since each model utilizes different combinations
of explanatory variables and estimates the corresponding parameters.

To reduce the computational costs of the PMA estimator we considered both model
screening (see Section E.5 that contrasts two procedures) and using the LASSO for variable
selection in PMA post LASSO. After conducting model screening in the main text, for open
box office, we include 95 potential models in the model averaging process. For movie unit
sales, this number is 56. Among these models, it may be important to understand their
relative importance in the PMA estimator. Thus, we next present a summary of model
averaging weights by PMA for open box office and movie unit sales in Table A7.16 We see
that the total weights of the top 5 models for each scenario account for more than 95% of

15We also expanded the definition to include if a film was released during the entire Thanksgiving to
Christmas period as well as post Memorial day through July. These dates correspond to seasons with higher
theatre occupancy and often coincide with releases of major films.

16 Mean and standard deviation of the weighting vectors are reported. We also present their 1% to 99%
quantiles.
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the total weights. Therefore, it is not a surprise to see that many the weights of many of the
models is quite close to zero, even at very high quantiles of the models.

Table A7: A Summary of Model Averaging Weights by PMA
Scenario Mean Std.Dev. Quantile

1% 10% 50% 90% 99%
Open Box M1 = 95

0.0105 0.0659 3.6E−15 6.6E−13 3.4E−9 7.2E−5 0.4359
Sum of Top 5: 99.98% out of total weight

Unit Sales: M2 = 56
0.0179 0.0739 1.6E−20 1.2E−17 5.7E−14 0.0282 0.4928

Sum of Top 5: 95.68% out of total weight

We next contrast the relative prediction efficiency of each of the top 5 models to the
PMA estimator in Table A8. That is, we compare the forecasting efficiency of the top 5
models to the PMA model for each scenario using the experiment conducted in the main
text. Not surprisingly, given Theorem 1 PMA shows better prediction efficiency than any of
the separate models that account for substantial weight of the PMA estimator. In general,
we observe models with higher weights deliver better performance than models with lower
weights. In most of the experiments conducted, the top five models have better performance
when the exercise set (nE) is smaller.

Table A8: Results for Relative Prediction Efficiency

Opening Weekend Box
nE Model 1 Model 2 Model 3 Model 4 Model 5 PMA
10 1.0443 1.0871 1.0934 1.1020 1.1561 1.0000
20 1.0362 1.0626 1.0520 1.0857 1.1020 1.0000
30 1.0253 1.0351 1.0522 1.0407 1.0648 1.0000
40 1.0234 1.0332 1.0435 1.0406 1.0466 1.0000

Retail Video Unit Sales
nE Model 1 Model 2 Model 3 Model 4 Model 5 PMA
10 1.1072 1.1023 1.1126 1.1126 1.1206 1.0000
15 1.1028 1.1446 1.1309 1.1139 1.1394 1.0000
20 1.1017 1.1729 1.1606 1.1953 1.1641 1.0000
25 1.1152 1.1118 1.1765 1.1612 1.1281 1.0000

Note: Bold numbers with the best performance in that simulation experiment
denoted by the row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific
estimation approach denoted in the column relative to results using the PMA
method presented in the last column.

Second, and as discussed in the main text when exploring the variables selected by the
LASSO continues to demonstrate the relative importance of measures from social media in
forecasting. When the LASSO respectively selects 10, 12 and 15 variables for open box office
4, 4, and 5 of which are social media measures; whereas 5, 7, and 9 are social media measures
for retail movie unit sales. This indicates that among the ten variables with the strongest
links to the industry outcomes considered 40 or 50% of them are obtained from social media,
rather than traditional data sources that describe the characteristics of the film itself.
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To further understand the importance of social media measures with this data, we also
calculate the R2 of undertaking the empirical strategy with and without sentiment variables.
The R2 for PMA is estimated following

R2 =
(µ̂− ȳ)>(µ̂− ȳ)

(y − ȳ)>(y − ȳ)
=

(µ̂(ŵ)− ȳ)>(µ̂(ŵ)− ȳ)

(y − ȳ)>(y − ȳ)
, (A17)

where µ̂ is the fitted value in general, ȳ is mean of y, and µ̂(ŵ) is the fitted value by model
averaging. As equation (A17) indicates, the model averaging R2 is not simply a weighted
average of all R2s by all approximation models.

E.3.1 Summarizing the Evidence

By averaging across all potential models, PMA captures the heterogeneity of all potential
parameters. Therefore, it should not be much of a surprise that the fit of the PMA model
in the last column of Tables A9 and A10 dominates the fit of any single model presented
in the remaining columns. The R2 statistic with and without sentiment data for the PMA
model and the five models with the highest estimated weights are presented in the bottom
two rows of the Tables A9 and A10. For both open box office and movie unit sales, PMA
R2s are significantly higher than any of the top five models contributing to the PMA results.
This reinforces that the gains in forecast accuracy are substantial since the inclusion of social
media data generally adds between 20-45% more of the explained variation. In addition, the
R2 is shown to decrease greatly if we omit Twitter variables (sentiment and volume) from
any of the top five individual models, with larger declines for box office openings then retail
movie unit sales. This indicates that Twitter variables have very strong explanatory power
from estimating open box office, since the inclusion of these explanatory variable doubles the
amount of explained variation for several of the individual models presented in Tables A9.

As a whole, our evidence presented in the main text and the online appendix suggests
that social media data and model uncertainty should equally share the billing on the top of
the marquee for Hollywood forecasts. This result appears consistent with a growing behav-
ioral and experimental economics literature that examines how opinions of others influence
decision-making. For example, while there is mixed evidence on whether perceived inten-
tions influence subsequent economic choices; much of the recent work including Bernheim,
Bjorkegren, Naecker, and Rangel (2015) suggests that external information can influence
decisions. Thus, it is not surprising that social media can play a role in movie purchasing
decisions and likely reflects purchasing intention. As a whole, these results can be inter-
preted as providing support for social media marketing to influence people’s intentions and
subsequent purchasing decisions related to movies and is consistent with recent work in be-
havioral economics including Camerer, Loewenstein, and Rabin (2004), Bertrand, Karlan,
Mullainathan, Shafir, and Zinman (2010) and Saez (2009) among others; that suggests that
external influences can change intentions when making a suite of economic decisions.

Prior research including Wan, Zhang, and Zou (2010) has shown that it is always neces-
sary and highly recommended to remove some poor models prior to model averaging in order
to control the total number of potential models. Without doing so, not only would there
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Table A9: Describing the 5 Highest Weight Models: Open Box Office
Model 1 Model 2 Model 3 Model 4 Model 5 PMA

Weight in PMA 0.5768 0.2635 0.1210 0.0385 0.0000
Genre
Action x
Adventure x x x x x x
Animation x x x x x x
Comedy x
Crime x x x x
Drama x
Family x x x x x x
Fantasy x x x x x
Mystery x
Romance x
Sci-Fi x
Thriller x
Rating
PG x
PG13 x x
R x x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x x
T-14/-20 x x
T-7/-13 x x
T-4/-6 x
T-1/-3 x x
Volume
T-21/-27 x
T-14/-20 x x
T-7/-13 x x x x x
T-4/-6 x x
T-1/-3 x x x x x x

R2 w/ SV. 0.8236 0.8142 0.8172 0.8122 0.8054 0.8368

R2 w/o SV. 0.4027 0.4058 0.3996 0.2385 0.2385 0.4250

Note: x denotes that explanatory variable is included in the particular model, SV denotes social media
data and PMA refers to our predictive model averaging method.
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Table A10: Describing the 5 Highest Weight Models: Retail Movie Unit Sales
Model 1 Model 2 Model 3 Model 4 Model 5 PMA

Weight in PMA 0.4596 0.2709 0.1365 0.0617 0.0213
Genre
Action x x x
Adventure x x x x x
Animation x x x x
Comedy x x x x
Crime x
Drama x x x x
Family x x x x x x
Fantasy x x x x x x
Mystery x x x
Romance x x x x x x
Sci-Fi x
Thriller x x x x x x
Rating
PG x
PG13 x
R x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x x x x x x
T-14/-20 x x x x x x
T-7/-13 x x x
T-4/-6 x x x x x x
T-1/-3 x x x x x
T+0 x x
T+1/+7 x x x x x x
T+8/+14 x
T+15/+21 x
T+22/+28 x x x x x x
Volume
T-21/-27 x x x x x x
T-14/-20 x x x x x x
T-7/-13 x x x x x x
T-4/-6 x
T-1/-3 x x x x x
T+0 x x
T+1/+7 x x
T+8/+14 x x x x x x
T+15/+21 x x
T+22/+28 x x x x

R2 w/ SV. 0.8456 0.8337 0.8360 0.8385 0.8384 0.8672

R2 w/o SV. 0.4995 0.4689 0.4635 0.5465 0.5321 0.5871

Note: x denotes that explanatory variable is included in the particular model, SV denotes social media
data and PMA refers to our predictive model averaging method.
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be additional computational costs but a full permutation of all variables includes a huge
amount of poorly constructed models will likely yield losses in efficiency and no further gains
in forecast accuracy. Therefore, it is always necessary for analysts to consider which of the
potential models are reasonable to include, and our analyses suggest that researchers should
use algorithms from both the machine learning and econometrics literature. Finally, we point
out that while concerns regarding model selection in empirical practice in this setting may
appear small, since our analyses uncovered that only 5 of the thousands of models estimated
accounted for over 95% of the resulting PMA estimator, the gains in forecast accuracy from
PMA to any of these 5 models are non-trivial.

E.4 OLS Results

OLS results for open box office and movie unit sales are presented in Table A11. This displays
the coefficients and standard errors when we use OLS to estimate the GUM model. The most
striking finding is that none of the individual sentiment variables is both positively relative
and statistically significant with either outcome. However, volume of Tweets immediately
prior to openness is strongly related to box office revenue.

E.5 Results using other Model Screening Methods

In this section, we demonstrate the robustness of the results to using an alternative model
screening method. Specifically, we consider the backward model screening (BW) procedure
proposed by Claeskens, Croux, and Venkerckhoven (2006). The procedure begins with the
null model and adds one variable at a time if that variable is selected by a specific information
criterion. Therefore, if there are q potential variables, the BW method will pick q+ 1 nested
models.

We conduct the same exercise as undertaken in Section 4 of the main text and compare
the BW procedure with the GETS procedure utilized in the main text. We use Mallows’ Cp as
our information criterion (we did experiment with other information criteria and the results
are robust and available from the authors upon request) and normalize the MSFEs according
to GETS. The results are presented in Table A12. In both scenarios, model averaging using
GETS as model screening method has dominant performance over the BW procedure.
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Table A11: OLS Estimation Results

Variable Open Box Office Movie Unit Sales
Coefficient Std.Dev Coefficient Std.Dev

Genre
Action -1.6740 2.7628 -0.2189 0.1653
Adventure 5.6271 2.9886 0.3039 0.1884
Animation -12.0668* 4.4977 -0.4725 0.2710
Comedy 3.8771 3.1518 0.1363 0.1969
Crime 2.5302 2.4695 0.0697 0.1467
Drama -2.1373 2.9139 0.0461 0.1850
Family 15.0426* 4.8439 0.8474* 0.2978
Fantasy 6.8763 4.0075 1.1017* 0.2514
Mystery 3.7158 3.4837 0.2305 0.2183
Romance -0.4696 2.9386 -0.1805 0.2023
Sci-Fi 0.8755 3.5302 0.0084 0.1990
Thriller 2.2727 2.9620 0.2547 0.1790
Rating
PG 9.1561 9.2292 -0.5467 1.7409
PG13 10.3972 10.1628 -0.4368 1.8098
R 14.9591 10.1766 -0.5183 1.8122
Core Parameters
Budget 0.1297* 0.0501 0.0064* 0.0029
Weeks 0.5706* 0.2114 0.0363* 0.0132
Screens 0.0089* 0.0021 0.0002 0.0001
Sentiment
T-21/-27 -0.6430 0.6658 -0.0563 0.0381
T-14/-20 0.7022 1.0758 0.0038 0.0670
T-7/-13 0.1360 1.5986 0.1399 0.1365
T-4/-6 -1.8274 2.0208 0.1280 0.1163
T-1/-3 2.9735 2.2055 -0.1789 0.1437
T+0 0.0407 0.1413
T+1/+7 0.2402 0.1974
T+8/+14 0.0274 0.1825
T+15/+21 0.0262 0.2060
T+22/+28 -0.3192* 0.1522
Volume
T-21/-27 -15.4697 23.4171 -3.5547* 1.4808
T-14/-20 38.3586 26.5180 2.1758 2.0951
T-7/-13 -36.2495 33.7318 -3.8213 1.9685
T-4/-6 -8.3976 26.0235 0.6337 1.6297
T-1/-3 24.5108* 3.9924 1.8758 1.0818
T+0 -0.3035 0.2639
T+1/+7 -0.1657 0.3719
T+8/+14 2.3104* 1.1012
T+15/+21 0.3234 0.9165
T+22/+28 0.3460 0.5768
R-square 0.8157 0.8129

* indicates the associated variable is significant at 5% level.
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Table A12: Contrasting Performance between Model Screening Methods
Open Box Unit Sales

nE BW GETS nE BW GETS
10 1.0558 1.0000 10 1.0274 1.0000
20 1.0577 1.0000 15 1.0434 1.0000
30 1.0641 1.0000 20 1.0382 1.0000
40 1.0716 1.0000 25 1.0432 1.0000

Note: Bold numbers with the best performance in that
simulation experiment denoted by the row of the table.
The remaining entries provide the ratio of the degree
of the respective forecast error metric of the estimator
using backward model screening approach denoted in
the column relative to results using the GETS method
presented in the last column.
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