ECON 452* -- NOTE 4

Functional Form in the Variables: Linear or Log?

□ The Natural Logarithmic Transformation

The *natural logarithmic transformation* is **defined only for variables that are** *strictly positively valued*.

 $ln Y_i$ is defined only if $Y_i > 0$ for all i. lnX_{ii} is defined only if $X_{ii} > 0$ for all i.

Differentials of lnY_i and lnX_{ii} are the relative, or proportionate, changes in Y_i and X_{ii}.

$$d \ln Y_i = \frac{d Y_i}{Y_i}$$
 = the *relative* (*proportionate*) change in Y_i if $Y_i > 0$ for all i.

$$d\ln X_{ij} = \frac{d\,X_{ij}}{X_{ij}} = \text{the } \textit{relative (proportionate)} \ \textit{change in } X_{ij} \ \text{if } X_{ij} > 0 \ \text{for all i.}$$

• Percentage changes in Y_i and X_{ij} are calculated by multiplying the respective relative changes by 100.

$$100(d \ln Y_i) = 100 \left(\frac{dY_i}{Y_i}\right) = \text{ the percentage change in } Y_i \text{ if } Y_i > 0 \text{ for all i.}$$

$$100(d \ln X_i) = 100 \left(\frac{dY_i}{Y_i}\right) = \text{ the percentage change in } Y_i \text{ if } Y_i > 0 \text{ for all } i.$$

$$100(d \ln X_{ij}) = 100 \left(\frac{dX_{ij}}{X_{ij}}\right) = \text{ the percentage change in } X_{ij} \text{ if } X_{ij} > 0 \text{ for all } i.$$

- The *elasticity coefficient* of Y with respect to X_j is defined as follows:

$$\epsilon_{j} = \frac{d \ln Y}{d \ln X_{j}} = \frac{dY/Y}{dX_{j}/X_{j}} = \frac{dY}{dX_{j}} \frac{X_{j}}{Y} = \text{ the \textit{elasticity} of } Y \text{ wrt to } X_{j}.$$

□ Four Common Functional Form Specifications of Regression Models

Model 1: the lin-lin (linear-in-levels) model

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{k}X_{ik} + u_{i}$$
(1)

- Both the dependent variable Y and the independent variables X_i enter in linear, or linear-in-levels, form.
- The population values of the slope coefficients β_j (j=1,...,k) depend on the units in which both Y and X_j are measured.

Model 2: the log-log (double-log) model

$$\ln Y_{i} = \alpha_{0} + \alpha_{1} \ln X_{i1} + \alpha_{2} \ln X_{i2} + \dots + \alpha_{k} \ln X_{ik} + u_{i}$$
(2)

- Both the dependent variable Y and the independent variables X_i enter in natural logarithmic, or log, form.
- The population values of the slope coefficients α_j (j = 1, ..., k) do not depend on the units in which Y and X_j are measured.

Model 3: the log-lin (semi-log) model

$$\ln Y_{i} = \gamma_{0} + \gamma_{1} X_{i1} + \gamma_{2} X_{i2} + \dots + \gamma_{k} X_{ik} + u_{i}$$
(3)

- The dependent variable Y enters in log form, but the independent variables X_i enter in linear form.
- The population values of the slope coefficients γ_j (j = 1, ..., k) depend on the units in which the X_j are measured, but do not depend on the units in which Y is measured.

Model 4: the lin-log (inverse semi-log) model

$$Y_{i} = \phi_{0} + \phi_{1} \ln X_{i1} + \phi_{2} \ln X_{i2} + \dots + \phi_{k} \ln X_{ik} + u_{i}$$
(4)

- The dependent variable Y enters in linear form, but the independent variables X_i enter in log form.
- The population values of the slope coefficients ϕ_j (j = 1, ..., k) do not depend on the units in which the X_j are measured, but do depend on the units in which Y is measured.

☐ How do these four alternative specifications of the linear regression model differ?

- These four models are all linear-in-parameters, or linear-in-coefficients. They are all *linear* regression models.
- The only difference among these four models is the interpretation of their respective regression coefficients.

□ Model 1: the lin-lin model

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{k} X_{ik} + u_{i}$$
(1)

• The slope coefficients β_i (j = 1, ..., k) are interpreted as

$$\beta_j = \frac{\partial Y_i}{\partial X_{ij}} = \frac{\text{change in } Y_i}{\text{change in } X_{ij}} = \textit{partial slope of } Y \textit{ with respect to } X_j.$$

Note: The value of β_i depends on the units in which both Y_i and X_{ij} are measured.

• The *lin-lin* model is linear in the variables Y_i and X_{ij} (j = 1, ..., k):

partial slope of Y wrt
$$X_j = \frac{\partial Y_i}{\partial X_{ij}} = \beta_j = a$$
 constant.

$$\begin{split} &Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + u_{i} \\ &\beta_{1} = \frac{\partial Y_{i}}{\partial X_{i1}} = \frac{\text{change in }Y_{i}}{\text{change in }X_{i1}} = \frac{\Delta Y_{i}}{\Delta X_{i1}} = \text{ the } \textit{partial slope of }Y \text{ wrt }X_{1}; \\ &\beta_{2} = \frac{\partial Y_{i}}{\partial X_{i2}} = \frac{\text{change in }Y_{i}}{\text{change in }X_{i2}} = \frac{\Delta Y_{i}}{\Delta X_{i2}} = \text{ the } \textit{partial slope of }Y \text{ wrt }X_{2}. \end{split}$$

$$price_i = \beta_0 + \beta_1 wgt_i + \beta_2 mpg_i + u_i$$

$$\beta_{1} = \frac{\partial price_{i}}{\partial wgt_{i}} = \frac{change in \ price_{i}}{change in \ wgt_{i}} = \frac{\Delta price_{i}}{\Delta wgt_{i}}$$

$$\beta_{2} = \frac{\partial price_{i}}{\partial mpg_{i}} = \frac{change in \ price_{i}}{change in \ mpg_{i}} = \frac{\Delta price_{i}}{\Delta mpg_{i}}$$

□ Model 2: the log-log model

$$\ln Y_{i} = \alpha_{0} + \alpha_{1} \ln X_{i1} + \alpha_{2} \ln X_{i2} + \dots + \alpha_{k} \ln X_{ik} + u_{i}$$
(2)

• The slope coefficients α_i (j = 1, ..., k) are interpreted as

$$\alpha_{j} = \frac{\partial \ln Y_{i}}{\partial \ln X_{ij}} = \frac{\partial Y_{i}/Y_{i}}{\partial X_{ij}/X_{ij}} = \frac{\partial Y_{i}}{\partial X_{ij}} \frac{X_{ij}}{Y_{i}} = \frac{\text{relative change in } Y_{i}}{\text{relative change in } X_{ij}} = \frac{\% \Delta Y_{i}}{\% \Delta X_{ij}}$$

= the partial elasticity of Y with respect to X_j.

Note: The value of α_i does not depend on the units in which Y_i and X_{ij} are measured.

• The $\emph{log-log}$ model is $\emph{nonlinear}$ in the variables $\mathbf{Y_i}$ and $\mathbf{X_{ij}}$ (j=1,...,k):

$$\text{partial slope of } Y \text{ wrt } X_j = \frac{\partial Y_i}{\partial X_{ij}} = \frac{\partial \ln Y_i}{\partial \ln X_{ij}} \frac{Y_i}{X_{ij}} = \alpha_j \frac{Y_i}{X_{ij}} = \text{a variable}.$$

$$\begin{split} &\ln Y_i = \alpha_0 + \alpha_1 \ln X_{i1} + \alpha_2 \ln X_{i2} + u_i \\ &\alpha_1 = \frac{\partial \ln Y_i}{\partial \ln X_{i1}} = \frac{\Delta Y_i/Y_i}{\Delta X_{i1}/X_{i1}} = \frac{\text{relative change in } Y_i}{\text{relative change in } X_{i1}} = \text{the } \textit{partial elasticity of } \textbf{Y wrt } \textbf{X}_1; \\ &\alpha_2 = \frac{\partial \ln Y_i}{\partial \ln X_{i2}} = \frac{\Delta Y_i/Y_i}{\Delta X_{i2}/X_{i2}} = \frac{\text{relative change in } Y_i}{\text{relative change in } X_{i2}} = \text{the } \textit{partial elasticity of } \textbf{Y wrt } \textbf{X}_2. \end{split}$$

$$ln(price_i) = \alpha_0 + \alpha_1 ln(wgt_i) + \alpha_2 ln(mpg_i) + u_i$$

$$\begin{split} \alpha_1 &= \frac{\partial \, ln(price_i)}{\partial \, ln(wgt_i)} = \frac{relative \, change \, in \, price_i}{relative \, change \, in \, wgt_i} = \frac{\% \, \Delta price_i}{\% \, \Delta wgt_i} \\ \alpha_2 &= \frac{\partial \, ln(price_i)}{\partial \, ln(mpg_i)} = \frac{relative \, change \, in \, price_i}{relative \, change \, in \, mpg_i} = \frac{\% \, \Delta price_i}{\% \, \Delta mpg_i} \end{split}$$

□ Model 3: the log-lin model

$$\ln Y_{i} = \gamma_{0} + \gamma_{1} X_{i1} + \gamma_{2} X_{i2} + \dots + \gamma_{k} X_{ik} + u_{i}$$
(3)

• The *slope* coefficients γ_i (j = 1, ..., k) are interpreted as

$$\gamma_{j} = \frac{\partial \ln Y_{i}}{\partial X_{ij}} = \frac{\partial Y_{i}/Y_{i}}{\partial X_{ij}} = \frac{\partial Y_{i}}{\partial X_{ij}} \frac{1}{Y_{i}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{ij}}$$

$$100 \gamma_{j} = \frac{\text{percentage change in } Y_{i}}{\text{change in } X_{ij}} = \frac{\% \Delta Y_{i}}{\Delta X_{ij}}$$

= partial semi-elasticity of Y wrt to X_i .

Note: The value of γ_j does depend on the units in which X_{ij} is measured, but does not depend on the units in which Y_i is measured.

• The log-lin model is nonlinear in the variable Y_i:

$$partial \ slope \ of \ Y \ wrt \ X_j = \frac{\partial Y_i}{\partial X_{ij}} = \frac{\partial \ln Y_i}{\partial X_{ij}} \ Y_i = \gamma_j Y_i = a \ variable.$$

$$\begin{split} &\ln Y_{i} = \gamma_{0} + \gamma_{1} X_{i1} + \gamma_{2} X_{i2} + u_{i} \\ &\gamma_{1} = \frac{\partial \ln Y_{i}}{\partial X_{i1}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{i1}} \,; \qquad 100 \gamma_{1} = \frac{\% \Delta Y_{i}}{\Delta X_{i1}} \\ &\gamma_{2} = \frac{\partial \ln Y_{i}}{\partial X_{i2}} = \frac{\text{relative change in } Y_{i}}{\text{change in } X_{i2}} \,; \qquad 100 \gamma_{2} = \frac{\% \Delta Y_{i}}{\Delta X_{i2}} \end{split}$$

$$\begin{split} &\ln(\text{price}_{i}) = \gamma_{0} + \gamma_{1}\text{wgt}_{i} + \gamma_{2}\text{mpg}_{i} + u_{i} \\ &100\gamma_{1} = 100\frac{\partial \ln(\text{price}_{i})}{\partial \text{wgt}_{i}} = \frac{\text{percentage change in price}_{i}}{\text{change in wgt}_{i}} = \frac{\%\Delta\text{price}_{i}}{\Delta\text{wgt}_{i}} \\ &100\gamma_{2} = 100\frac{\partial \ln(\text{price}_{i})}{\partial \text{mpg}_{i}} = \frac{\text{percentage change in price}_{i}}{\text{change in mpg}_{i}} = \frac{\%\Delta\text{price}_{i}}{\Delta\text{mpg}_{i}} \end{split}$$

□ Model 4: the lin-log model

$$Y_{i} = \phi_{0} + \phi_{1} \ln X_{i1} + \phi_{2} \ln X_{i2} + \dots + \phi_{k} \ln X_{ik} + u_{i}$$
(4)

• The *slope* coefficients ϕ_i (j = 1, ..., k) are interpreted as

$$\phi_j = \frac{\partial Y_i}{\partial \ln X_{ij}} = \frac{\partial Y_i}{\partial X_{ij} \big/ X_{ij}} = \frac{\partial Y_i}{\partial X_{ij}} X_{ij} = \frac{\text{change in } Y_i}{\text{relative change in } X_{ij}} \,.$$

$$\frac{\phi_{j}}{100} = \frac{\text{change in } Y_{i}}{\text{percentage change in } X_{ij}} = \frac{\Delta Y_{i}}{\% \Delta X_{ij}}.$$

Note: The value of ϕ_j does depend on the units in which Y_i is measured, but does not depend on the units in which X_{ii} is measured.

• The *lin-log* model is *nonlinear* in the variables X_{ij} (j = 1, ..., k):

$$\text{partial slope of } Y \text{ wrt } X_j = \frac{\partial Y_i}{\partial X_{ij}} = \frac{\partial Y_i}{\partial \ln X_{ij}} \frac{1}{X_{ij}} = \phi_j \frac{1}{X_{ij}} = \frac{\phi_j}{X_{ij}} = a \text{ variable}.$$

$$\begin{split} Y_i &= \phi_0 + \phi_1 \ln X_{i1} + \phi_2 \ln X_{i2} + u_i \\ \phi_1 &= \frac{\partial Y_i}{\partial \ln X_{i1}} = \frac{\text{change in } Y_i}{\text{relative change in } X_{i1}} = \frac{\Delta Y_i}{\Delta X_{i1}/X_{i1}} \\ \phi_2 &= \frac{\partial Y_i}{\partial \ln X_{i2}} = \frac{\text{change in } Y_i}{\text{relative change in } X_{i2}} = \frac{\Delta Y_i}{\Delta X_{i2}/X_{i2}} \end{split}$$

$$price_i = \phi_0 + \phi_1 \ln(wgt_i) + \phi_2 \ln(mpg_i) + u_i$$

$$\begin{split} & \phi_1 = \frac{\partial \text{price}_i}{\partial \ln(\text{wgt}_i)} = \frac{\text{change in price}_i}{\text{relative change in wgt}_i}; & \frac{\phi_1}{100} = \frac{\Delta \text{price}_i}{\% \Delta \text{wgt}_i} \\ & \phi_2 = \frac{\partial \text{price}_i}{\partial \ln(\text{mpg}_i)} = \frac{\text{change in price}_i}{\text{relative change in mpg}_i}; & \frac{\phi_2}{100} = \frac{\Delta \text{price}_i}{\% \Delta \text{mpg}_i} \end{split}$$

□ Examples: Four Models of North American Car Prices

Variables:

price; = the price of the i-th car (in US dollars);

wgt; = the weight of the i-th car (in pounds);

mpg_i = the miles per gallon (fuel efficiency) for the i-th car (in miles per gallon).

Example 1: a lin-lin model

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$$
(1)

OLS sample regression function:

. regress price wgt mpg

Source	ss	df	MS		Number of obs	
Model Residual Total	186321280 448744116 635065396	71 6320	0639.9 339.67 		F(2, 71) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2934
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt mpg _cons	1.746559 -49.51222 1946.069	.6413538 86.15604 3597.05	2.72 -0.57 0.54	0.008 0.567 0.590	.467736 -221.3025 -5226.244	3.025382 122.278 9118.382

Example 1: a lin-lin model

$$price_{i} = \beta_{0} + \beta_{1}wgt_{i} + \beta_{2}mpg_{i} + u_{i}$$
(1)

Interpretation of Slope Coefficient Estimates

 $\hat{\beta}_1 = 1.747 = \text{an estimate of the } (partial) slope of price with respect to wgt.$

• An *increase* (decrease) in *wgt* of **1 pound** is associated on average with an *increase* (decrease) in *price* of **1.747 dollars** (per car).

 $\hat{\beta}_2 = -49.51 = \text{an estimate of the } (partial) slope of price with respect to mpg.$

• An *increase* (decrease) in *mpg* (fuel efficiency) of **1 mile per gallon** is associated on average with a *decrease* (increase) in *price* of **49.51 dollars** (per car).

Example 2: a log-log model

$$ln(price_i) = \alpha_0 + \alpha_1 ln(wgt_i) + \alpha_2 ln(mpg_i) + u_i$$
(2)

OLS sample regression function:

. regress lnprice lnwgt lnmpg

Source	SS	df	MS		Number of obs F(2, 71)	
Model Residual	3.43231706 7.79121602		L615853 9735437		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3058
Total	11.2235331	73 .153	3747029		Root MSE	= .33126
lnprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnwgt	.1910324	.2720159	0.70	0.485	3513519	.7334167
lnmpg	6616411	.2784715	-2.38	0.020	-1.216898	1063847
_cons	9.11759	2.91713	3.13	0.003	3.300998	14.93418

Example 2: a log-log model

$$\ln(\text{price}_i) = \alpha_0 + \alpha_1 \ln(\text{wgt}_i) + \alpha_2 \ln(\text{mpg}_i) + u_i$$
 (2)

Interpretation of Slope Coefficient Estimates

 $\hat{\alpha}_1 = 0.191 = \text{an estimate of the } partial elasticity of price with respect to wgt.$

- A 1 percent *increase* (decrease) in *wgt* is associated on average with a **0.191** percent *increase* (decrease) in *price*.
- A 10 percent *increase* (decrease) in *wgt* is associated on average with a $10 \times 0.191 = 1.91$ percent *increase* (decrease) in *price*.

 $\hat{\alpha}_2 = -0.662 = \text{an estimate of the } partial elasticity of price \text{ with respect to } mpg.$

- A 1 percent *increase* (decrease) in *mpg* is associated on average with a 0.662 percent *decrease* (increase) in *price*.
- A 10 percent *increase* (decrease) in mpg is associated on average with a $10 \times 0.662 = 6.62$ percent decrease (increase) in price.

Example 3: a log-lin model

$$ln(price_i) = \gamma_0 + \gamma_1 wgt_i + \gamma_2 mpg_i + u_i$$
(3)

OLS sample regression function:

. regress lnprice wgt mpg

Source	ss	df	MS		Number of obs	
Model Residual	3.37488699 7.84864609		58744349 L0544311		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3007 = 0.2810
Total	11.2235331	73 .15	3747029		Root MSE	= .33248
lnprice	Coef.	Std. Err	t	P> t	[95% Conf.	Interval]
wgt	.0002087	.0000848	2.46	0.016	.0000396	.0003778
mpg	0106498	.0113942	-0.93	0.353	0333692	.0120696
_cons	8.237352	.4757123	17.32	0.000	7.288809	9.185896

Example 3: a log-lin model

$$ln(price_i) = \gamma_0 + \gamma_1 wgt_i + \gamma_2 mpg_i + u_i$$
(3)

Interpretation of Slope Coefficient Estimates

 $\hat{\gamma}_1 = 0.0002087$

 $100\,\hat{\gamma}_1 = 0.02087 = \text{an estimate of the } partial semi-elasticity of price wrt wgt.$

- A 1 pound *increase* (decrease) in *wgt* is associated on average with a 0.02087 percent *increase* (decrease) in *price*.
- A 100 pound *increase* (decrease) in *wgt* is associated on average with a $100 \times 0.02087 = 2.087$ percent *increase* (decrease) in *price*.

$$\hat{\gamma}_2 = -0.01065$$

 $100\,\hat{\gamma}_2 = -1.065 = \text{an estimate of the } partial semi-elasticity of price wrt mpg.$

- An *increase* (decrease) in *mpg* of 1 mile-per-gallon is associated on average with a 1.065 percent *decrease* (increase) in *price*.
- An *increase* (decrease) in *mpg* of **10 miles-per-gallon** is associated on average with a $10 \times 1.065 = 10.65$ percent *decrease* (increase) in *price*.

Example 4: a lin-log model

$$price_{i} = \phi_{0} + \phi_{1} \ln(wgt_{i}) + \phi_{2} \ln(mpg_{i}) + u_{i}$$

$$\tag{4}$$

OLS sample regression function:

. regress price lnwgt lnmpg

Source	ss	df	MS		Number of obs	
Model Residual Total	182921988 452143408 635065396	71 6368	0994.2 217.01 525.97		F(2, 71) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.2880
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lnwgt lnmpg _cons	1920.301 -4332.042 3946.072	2072.191 2121.369 22222.42	0.93 -2.04 0.18	0.357 0.045 0.860	-2211.531 -8561.932 -40364.17	6052.132 -102.152 48256.31

Example 4: a lin-log model

$$price_{i} = \phi_{0} + \phi_{1} \ln(wgt_{i}) + \phi_{2} \ln(mpg_{i}) + u_{i}$$

$$\tag{4}$$

Interpretation of Slope Coefficient Estimates

$$\hat{\phi}_1 = 1920.3$$

 $\hat{\phi}_1/100 = 19.20$ = an estimate of the *partial inverse semi-elasticity* of *price* with respect to *wgt*.

- A **100 percent** *increase* (decrease) in *wgt* is associated on average with an *increase* (decrease) in *price* of **1920.30 dollars**.
- A 1 percent *increase* (decrease) in *wgt* is associated on average with an *increase* (decrease) in *price* of 19.20 dollars.

$$\hat{\phi}_2 = -4332.0$$
 $\hat{\phi}_2/100 = -43.32$ = an estimate of the *partial inverse semi-elasticity* of *price* with respect to *mpg*.

- A **100 percent** *increase* (decrease) in *mpg* is associated on average with a *decrease* (increase) in *price* of **4332** dollars.
- A 1 percent *increase* (decrease) in *mpg* is associated on average with a *decrease* (increase) in *price* of 43.32 dollars.