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Maximum Likelihood Estimation of Binary Response Models

By far the most common way to estimate binary response models is to use the
method of maximum likelihood. Because the dependent variable is discrete,
the likelihood function cannot be defined as a joint density function, as it
was in Chapter 10 for models with a continuously distributed dependent vari-
able. When the dependent variable can take on discrete values, the likelihood
function for those values should be defined as the probability that the value
is realized, rather than as the probability density at that value. With this
redefinition, the sum of the possible values of the likelihood is equal to 1, just
as the integral of the possible values of a likelihood based on a continuous
distribution is equal to 1.

If, for observation t, the realized value of the dependent variable is yt, then the
likelihood for that observation if yt = 1 is just the probability that yt = 1, and
if yt = 0, it is the probability that yt = 0. The logarithm of the appropriate
probability is then the contribution to the loglikelihood made by observation t.

Since the probability that yt = 1 is F (Xtβ), the contribution to the loglike-
lihood function for observation t when yt = 1 is log F (Xtβ). Similarly, the
contribution to the loglikelihood function for observation t when yt = 0 is
log

(
1− F (Xtβ)

)
. Therefore, if y is an n--vector with typical element yt, the

loglikelihood function for y can be written as

`(y, β) =
n∑

t=1

(
yt log F (Xtβ) + (1− yt) log

(
1− F (Xtβ)

))
. (11.09)

For each observation, one of the terms inside the large parentheses is always 0,
and the other is always negative. The first term is 0 whenever yt = 0, and
the second term is 0 whenever yt = 1. When either term is nonzero, it must
be negative, because it is equal to the logarithm of a probability, and this
probability must be less than 1 whenever Xtβ is finite. For the model to fit
perfectly, F (Xtβ) would have to equal 1 when yt = 1 and 0 when yt = 0, and
the entire expression inside the parentheses would then equal 0. This could
happen only if Xtβ = ∞ whenever yt = 1, and Xtβ = −∞ whenever yt = 0.
Therefore, we see that (11.09) is bounded above by 0.

Maximizing the loglikelihood function (11.09) is quite easy to do. For the logit
and probit models, this function is globally concave with respect to β (see
Pratt, 1981, and Exercise 11.1). This implies that the first-order conditions,
or likelihood equations, uniquely define the ML estimator β̂, except for one
special case that we consider in the subsection following the next one. These
likelihood equations can be written as

n∑
t=1

(
yt − F (Xtβ)

)
f(Xtβ)xti

F (Xtβ)
(
1− F (Xtβ)

) = 0, i = 1, . . . , k. (11.10)

There are many ways to find β̂ in practice. Because of the global concavity


