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The result that the statistic Q(β̃FGMM, y) −Q(β̂FGMM, y) is asymptotically
distributed as χ2(k2) depends on two critical features of the construction of
the statistic. The first is that the same matrix of instruments W is used for
estimating both the restricted and unrestricted models. This was also required
in Section 8.5, when we discussed testing restrictions on linear regression
models estimated by generalized IV. The second essential feature is that the
same weighting matrix (W>Ω̂W )−1 is used when estimating both models. If,
as is usually the case, this matrix has to be estimated, it is important that the
same estimate be used in both criterion functions. If different instruments or
different weighting matrices are used for the two models, (9.52) is no longer
in general asymptotically distributed as χ2(k2).

One interesting consequence of the form of (9.52) is that we do not always
need to bother estimating the unrestricted model. The test statistic (9.52)
must always be less than the constrained minimum Q(β̃FGMM,y). Therefore,
if Q(β̃FGMM, y) is less than the critical value for the χ2(k2) distribution at
our chosen significance level, we can be sure that the actual test statistic is
even smaller and would not lead us to reject the null.

The result that tests of restrictions may be based on the difference between
the constrained and unconstrained minima of the GMM criterion function
holds only for efficient GMM estimation. It is not true for nonoptimal crite-
rion functions like (9.12), which do not use an estimate of the inverse of the
covariance matrix of the sample moments as a weighting matrix. When the
GMM estimates minimize a nonoptimal criterion function, the easiest way to
test restrictions is probably to use a Wald test; see Sections 6.7 and 8.5. How-
ever, we do not recommend performing inference on the basis of nonoptimal
GMM estimation.

9.5 GMM Estimators for Nonlinear Models

The principles underlying GMM estimation of nonlinear models are the same
as those we have developed for GMM estimation of linear regression models.
For every result that we have discussed in the previous three sections, there is
an analogous result for nonlinear models. In order to develop these results, we
will take a somewhat more general and abstract approach than we have done
up to this point. This approach, which is based on the theory of estimating
functions, was originally developed by Godambe (1960) and Durbin (1960);
see also Godambe and Thompson (1978).

The method of estimating functions employs the concept of an elementary
zero function. Such a function plays the same role as a residual in the esti-
mation of a regression model. It depends on observed variables, at least one
of which must be endogenous, and on a k --vector of parameters, θ. As with
a residual, the expectation of an elementary zero function must vanish if it is
evaluated at the true value of θ, but not in general otherwise.


