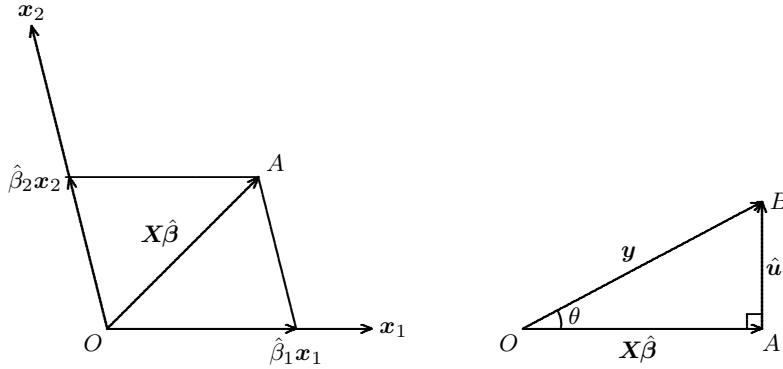
(a) y projected on two regressors(b) The span $\mathcal{S}(x_1, x_2)$ of the regressors(c) The vertical plane through y (c) The vertical plane through y

Figure 2.11 Linear regression in three dimensions

a perpendicular" from y to the horizontal plane. The least-squares interpretation of the MM estimator $\hat{\beta}$ can now be seen to be a consequence of simple geometry. The shortest distance from y to the horizontal plane is obtained by descending vertically on to it, and the point in the horizontal plane vertically below y , labeled A in the figure, is the closest point in the plane to y . Thus $\|\hat{u}\|$ minimizes $\|\mathbf{u}(\beta)\|$, the norm of $\mathbf{u}(\beta)$, with respect to β . The squared norm, $\|\mathbf{u}(\beta)\|^2$, is just the sum of squared residuals, $\text{SSR}(\beta)$; see (1.49). Since minimizing the norm of $\mathbf{u}(\beta)$ is the same thing as minimizing the squared norm, it follows that $\hat{\beta}$ is the OLS estimator.

Panel (b) of the figure shows the horizontal plane $\mathcal{S}(x_1, x_2)$ as a straightforward 2-dimensional picture, seen from directly above. The point A is the point directly underneath y , and so, since $y = X\hat{\beta} + \hat{u}$ by definition, the vector represented by the line segment OA is the vector of fitted values, $X\hat{\beta}$. Geometrically, it is much simpler to represent $X\hat{\beta}$ than to represent just the