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Since exp(`t(yt, θ)) is, for the DGP characterized by θ, the density of yt

conditional on yt−1, this last equation, along with the definition (10.26), gives

Eθ
(
Gti(yt, θ) |yt−1

)
= 0 (10.29)

for all t = 1, . . . , n and i = 1, . . . , k. The notation “Eθ” here means that the
expectation is being taken under the DGP characterized by θ. Taking uncon-
ditional expectations of (10.29) yields the desired result. Summing (10.29)
over t = 1, . . . , n shows that Eθ(gi(y,θ)) = 0 for i = 1, . . . , k, or, equivalently,
that Eθ(g(y,θ)) = 0.

In addition to the conditional expectations of the elements of the matrix
G(y, θ), we can compute the covariances of these elements. Let t 6= s, and
suppose, without loss of generality, that t < s. Then the covariance under the
DGP characterized by θ of the tith and sj th elements of G(y, θ) is

Eθ
(
Gti(yt, θ)Gsj(ys, θ)

)
= Eθ

(
Eθ

(
Gti(yt, θ)Gsj(ys,θ)

) |yt
))

= Eθ
(
Gti(yt,θ)Eθ

(
Gsj(ys,θ) |yt

))
= 0.

(10.30)

The step leading to the second line above follows because Gti(·) is a deter-
ministic function of yt, and the last step follows because the expectation of
Gsj(·) is zero conditional on ys−1, by (10.29), and so also conditional on the
subvector yt of ys−1. The above proof shows that the covariance of the two
matrix elements is also zero conditional on yt.

The Information Matrix and the Hessian

The covariance matrix of the elements of the tth row Gt(yt,θ) of G(y, θ) is
the k × k matrix It(θ), of which the ij th element is Eθ(Gti(yt, θ)Gtj(yt, θ)).
As a covariance matrix, It(θ) is normally positive definite. The sum of the
matrices It(θ) over all t is the k × k matrix

I(θ) ≡
n∑

t=1

It(θ) =
n∑

t=1

Eθ
(
Gt
>(yt, θ)Gt(yt, θ)

)
, (10.31)

which is called the information matrix. The matrices It(θ) are the contribu-
tions to the information matrix made by the successive observations.

An equivalent definition of the information matrix, as readers are invited to
show in Exercise 10.5, is I(θ) ≡ Eθ(g(y, θ)g>(y,θ)). In this second form,
the information matrix is the expectation of the outer product of the gradi-
ent with itself; see Section 1.4 for the definition of the outer product of two
vectors. Less exotically, it is just the covariance matrix of the score vector.
As the name suggests, and as we will see shortly, the information matrix is
a measure of the total amount of information about the parameters in the
sample. The requirement that it should be positive definite is a condition


