

the purposes of the first of these, we need to assume that the zero functions f_t are continuously differentiable in the neighborhood of $\boldsymbol{\theta}_0$. If we perform a first-order Taylor expansion of $n^{1/2}$ times (9.59) around $\boldsymbol{\theta}_0$ and introduce some appropriate factors of powers of n , we obtain the result that

$$n^{-1/2} \mathbf{Z}^\top \mathbf{f}(\boldsymbol{\theta}_0) + n^{-1} \mathbf{Z}^\top \mathbf{F}(\bar{\boldsymbol{\theta}}) n^{1/2} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \mathbf{0}, \quad (9.62)$$

where the $n \times k$ matrix $\mathbf{F}(\boldsymbol{\theta})$ has typical element

$$F_{ti}(\boldsymbol{\theta}) = \frac{\partial f_t(\boldsymbol{\theta})}{\partial \theta_i}, \quad (9.63)$$

where θ_i is the i^{th} element of $\boldsymbol{\theta}$. This matrix, like $\mathbf{f}(\boldsymbol{\theta})$ itself, depends implicitly on the vector \mathbf{y} and is therefore stochastic. The notation $\mathbf{F}(\bar{\boldsymbol{\theta}})$ in (9.62) is the convenient shorthand we introduced in Section 6.2: Row t of the matrix is the corresponding row of $\mathbf{F}(\boldsymbol{\theta})$ evaluated at $\boldsymbol{\theta} = \bar{\boldsymbol{\theta}}_t$, where the $\bar{\boldsymbol{\theta}}_t$ all satisfy the inequality

$$\|\bar{\boldsymbol{\theta}}_t - \boldsymbol{\theta}_0\| \leq \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0\|.$$

The consistency of $\hat{\boldsymbol{\theta}}$ then implies that the $\bar{\boldsymbol{\theta}}_t$ also tend to $\boldsymbol{\theta}_0$ as $n \rightarrow \infty$.

The consistency of the $\bar{\boldsymbol{\theta}}_t$ implies that

$$\text{plim}_{n \rightarrow \infty} \frac{1}{n} \mathbf{Z}^\top \mathbf{F}(\bar{\boldsymbol{\theta}}) = \text{plim}_{n \rightarrow \infty} \frac{1}{n} \mathbf{Z}^\top \mathbf{F}(\boldsymbol{\theta}_0). \quad (9.64)$$

Under reasonable regularity conditions, we can apply a law of large numbers to the right-hand side of (9.64), and the probability limit is then deterministic. For asymptotic normality, we also require that it should be nonsingular. This is a condition of **strong asymptotic identification**, of the sort used in Section 6.2. By a first-order Taylor expansion of $\boldsymbol{\alpha}(\boldsymbol{\theta}; \mu)$ around $\boldsymbol{\theta}_0$, where it is equal to $\mathbf{0}$, we see from the definition (9.60) that

$$\boldsymbol{\alpha}(\boldsymbol{\theta}; \mu) \stackrel{a}{=} \text{plim}_{n \rightarrow \infty} \frac{1}{n} \mathbf{Z}^\top \mathbf{F}(\boldsymbol{\theta}_0) (\boldsymbol{\theta} - \boldsymbol{\theta}_0). \quad (9.65)$$

Therefore, the condition that the right-hand side of (9.64) is nonsingular is a strengthening of the condition that $\boldsymbol{\theta}$ is asymptotically identified. Because it is nonsingular, the system of equations

$$\text{plim}_{n \rightarrow \infty} \frac{1}{n} \mathbf{Z}^\top \mathbf{F}(\boldsymbol{\theta}_0) (\boldsymbol{\theta} - \boldsymbol{\theta}_0) = \mathbf{0}$$

has no solution other than $\boldsymbol{\theta} = \boldsymbol{\theta}_0$. By (9.65), this implies that $\boldsymbol{\alpha}(\boldsymbol{\theta}; \mu) \neq \mathbf{0}$ for all $\boldsymbol{\theta} \neq \boldsymbol{\theta}_0$, which is the asymptotic identification condition.

Applying the results just discussed to equation (9.62), we find that

$$n^{1/2} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{a}{=} - \left(\text{plim}_{n \rightarrow \infty} \frac{1}{n} \mathbf{Z}^\top \mathbf{F}(\boldsymbol{\theta}_0) \right)^{-1} n^{-1/2} \mathbf{Z}^\top \mathbf{f}(\boldsymbol{\theta}_0). \quad (9.66)$$