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the purposes of the first of these, we need to assume that the zero functions
ft are continuously differentiable in the neighborhood of 6y. If we perform
a first-order Taylor expansion of n'/2 times (9.59) around 6y and introduce
some appropriate factors of powers of n, we obtain the result that

n"Y2ZTf(00) +n" ZTF(0)n'/?(6 — 6y) = 0, (9.62)
where the n x k matrix F'(0) has typical element

F;(0) = agé?)’ (9.63)

where 6; is the i*® element of 6. This matrix, like () itself, depends implic-
itly on the vector y and is therefore stochastic. The notation F () in (9.62)
is the convenient shorthand we introduced in Section 6.2: Row t of the matrix
is the corresponding row of F(0) evaluated at 8 = 6;, where the 6; all satisfy
the inequality

6. - o] <

6 — 0.
The consistency of 0 then implies that the 6; also tend to 6y as n — oco.

The consistency of the 8, implies that

plim £ Z"F(9) = plim 2 Z"F(6,). (9.64)

n—oo n—oo
Under reasonable regularity conditions, we can apply a law of large numbers
to the right-hand side of (9.64), and the probability limit is then determinis-
tic. For asymptotic normality, we also require that it should be nonsingular.
This is a condition of strong asymptotic identification, of the sort used in
Section 6.2. By a first-order Taylor expansion of a(0; i) around 6y, where it
is equal to 0, we see from the definition (9.60) that

o(6; 1) = plim = ZTF(05)(6 — 6). (9.65)
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Therefore, the condition that the right-hand side of (9.64) is nonsingular is a
strengthening of the condition that 6 is asymptotically identified. Because it
is nonsingular, the system of equations

plim = ZF(6,)(6 — 65) = 0

has no solution other than 6 = 6y. By (9.65), this implies that a(0;u) # 0
for all @ # 0y, which is the asymptotic identification condition.
Applying the results just discussed to equation (9.62), we find that
R —1
nt/2(0 — 9) = — (plim %ZTF(00)> n~Y2ZTE(0,). (9.66)
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